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three planes, perpendicular to the coordinate axes, contain three hidden sides of an infinitesimal cube
(Fig. 1.2). We emphasize that when we move from point Q to point Q′ the values of stress will, in
general, change. Also, body forces can exist. However, these cases are not discussed here (see Sec.
1.8), as we are now merely interested in establishing the terminology necessary to specify a stress
component.

Figure 1.2. Element subjected to three-dimensional stress. All stresses have positive sense.

The general case of a three-dimensional state of stress is shown in Fig. 1.2. Consider the stresses to
be identical at points Q and Q′ and uniformly distributed on each face, represented by a single vector
acting at the center of each face. In accordance with the foregoing, a total of nine scalar stress
components defines the state of stress at a point. The stress components can be assembled in the
following matrix form, wherein each row represents the group of stresses acting on a plane passing
through Q(x, y, z):

(1.6)

We note that in indicial notation (refer to Sec. 1.17), a stress component is written as τij, where the
subscripts i and j each assume the values of x, y, and z as required by the foregoing equation. The
double subscript notation is interpreted as follows: The first subscript indicates the direction of a
normal to the plane or face on which the stress component acts; the second subscript relates to the
direction of the stress itself. Repetitive subscripts are avoided in this text, so the normal stresses τxx,
τyy, and τzz are designated σx, σy, and σz, as indicated in Eq. (1.6). A face or plane is usually
identified by the axis normal to it; for example, the x faces are perpendicular to the x axis.

Sign Convention
Referring again to Fig. 1.2, we observe that both stresses labeled τyx tend to twist the element in a
clockwise direction. It would be convenient, therefore, if a sign convention were adopted under
which these stresses carried the same sign. Applying a convention relying solely on the coordinate
direction of the stresses would clearly not produce the desired result, inasmuch as the τyx stress acting
on the upper surface is directed in the positive x direction, while τyx acting on the lower surface is
directed in the negative x direction. The following sign convention, which applies to both normal and
shear stresses, is related to the deformational influence of a stress and is based on the relationship
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between the direction of an outward normal drawn to a particular surface and the directions of the
stress components on the same surface.
When both the outer normal and the stress component face in a positive direction relative to the
coordinate axes, the stress is positive. When both the outer normal and the stress component face in a
negative direction relative to the coordinate axes, the stress is positive. When the normal points in a
positive direction while the stress points in a negative direction (or vice versa), the stress is negative.
In accordance with this sign convention, tensile stresses are always positive and compressive
stresses always negative. Figure 1.2 depicts a system of positive normal and shear stresses.

Equality of Shearing Stresses
We now examine properties of shearing stress by studying the equilibrium of forces (see Sec. 1.4)
acting on the cubic element shown in Fig. 1.2. As the stresses acting on opposite faces (which are of
equal area) are equal in magnitude but opposite in direction, translational equilibrium in all
directions is assured; that is, ΣFx = 0, ΣFy = 0, and ΣFz = 0. Rotational equilibrium is established by
taking moments of the x-, y-, and z-directed forces about point Q, for example. From ΣMz = 0,

(–τxy dy dz)dx + (τyx dx dz)dy = 0

Simplifying,

(1.7a)
Likewise, from ΣMy = 0 and ΣMx = 0, we have

(1.7b)

Hence, the subscripts for the shearing stresses are commutative, and the stress tensor is symmetric.
This means that shearing stresses on mutually perpendicular planes of the element are equal.
Therefore, no distinction will hereafter be made between the stress components τxy and τyx, τxz and
τzx, or τyz and τzy. In Section 1.8, it is shown rigorously that the foregoing is valid even when stress
components vary from one point to another.

Some Special Cases of Stress
Under particular circumstances, the general state of stress (Fig. 1.2) reduces to simpler stress states,
as briefly described here. These stresses, which are commonly encountered in practice, are given
detailed consideration throughout the text.
a. Triaxial Stress. We shall observe in Section 1.13 that an element subjected to only stresses σ1, σ2,

and σ3 acting in mutually perpendicular directions is said to be in a state of triaxial stress. Such a
state of stress can be written as

(a)

The absence of shearing stresses indicates that the preceding stresses are the principal stresses for
the element. A special case of triaxial stress, known as spherical or dilatational stress, occurs if
all principal stresses are equal (see Sec. 1.14). Equal triaxial tension is sometimes called
hydrostatic tension. An example of equal triaxial compression is found in a small element of liquid
under static pressure.

b. Two-Dimensional or Plane Stress. In this case, only the x and y faces of the element are subjected
to stress, and all the stresses act parallel to the x and y axes, as shown in Fig. 1.3a. The plane stress
matrix is written

(1.8)

Figure 1.3. (a) Element in plane stress; (b) two-dimensional presentation of plane stress; (c)
element in pure shear.

Although the three-dimensional nature of the element under stress should not be forgotten, for the
sake of convenience we usually draw only a two-dimensional view of the plane stress element
(Fig. 1.3b). When only two normal stresses are present, the state of stress is called biaxial. These
stresses occur in thin plates stressed in two mutually perpendicular directions.

c. Pure Shear. In this case, the element is subjected to plane shearing stresses only, for example, τxy
and τyx (Fig. 1.3c). Typical pure shear occurs over the cross sections and on longitudinal planes of
a circular shaft subjected to torsion.

d. Uniaxial Stress. When normal stresses act along one direction only, the one-dimensional state of
stress is referred to as a uniaxial tension or compression.

1.6 Internal Force-Resultant and Stress Relations
Distributed forces within a load-carrying member can be represented by a statically equivalent
system consisting of a force and a moment vector acting at any arbitrary point (usually the centroid) of
a section. These internal force resultants, also called stress resultants, exposed by an imaginary
cutting plane containing the point through the member, are usually resolved into components normal
and tangent to the cut section (Fig. 1.4). The sense of moments follows the right-hand screw rule,
often represented by double-headed vectors, as shown in the figure. Each component can be
associated with one of four modes of force transmission:
1. The axial force P or N tends to lengthen or shorten the member.
2. The shear forces Vy and Vz tend to shear one part of the member relative to the adjacent part and

are often designated by the letter V.

The mechanics of materials theory is based on the simplifying assumptions related to the pattern of
deformation so that the strain distributions for a cross section of the member can be determined. It is a
basic assumption that plane sections before loading remain plane after loading. The assumption can
be shown to be exact for axially loaded prismatic bars, for prismatic circular torsion members, and
for prismatic beams subjected to pure bending. The assumption is approximate for other beam
situations. However, it is emphasized that there is an extraordinarily large variety of cases in which
applications of the basic formulas of mechanics of materials lead to useful results. In this text we
hope to provide greater insight into the meaning and limitations of stress analysis by solving problems
using both the elementary and exact methods of analysis.

1.7 Stresses on Inclined Sections
The stresses in bars, shafts, beams, and other structural members can be obtained by using the basic
formulas, such as those listed in Table 1.1. The values found by these equations are for stresses that
occur on cross sections of the members. Recall that all of the formulas for stress are limited to
isotropic, homogeneous, and elastic materials that behave linearly. This section deals with the states
of stress at points located on inclined sections or planes under axial loading. As before, we use
stress elements to represent the state of stress at a point in a member. However, we now wish to find
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Figure 1.8. Example 1.1. Stress element for θ = 35°.

1.8 Variation of Stress within a Body
As pointed out in Section 1.5, the components of stress generally vary from point to point in a
stressed body. These variations are governed by the conditions of equilibrium of statics. Fulfillment
of these conditions establishes certain relationships, known as the differential equations of
equilibrium, which involve the derivatives of the stress components.
Consider a thin element of sides dx and dy (Fig. 1.9), and assume that σx, σy, τxy, and τyx are functions
of x, y but do not vary throughout the thickness (are independent of z) and that the other stress
components are zero. Also assume that the x and y components of the body forces per unit volume, Fx
and Fy, are independent of z and that the z component of the body force Fz = 0. This combination of
stresses, satisfying the conditions described, is the plane stress. Note that because the element is very
small, for the sake of simplicity, the stress components may be considered to be distributed uniformly
over each face. In the figure they are shown by a single vector representing the mean values applied at
the center of each face.

Figure 1.9. Element with stresses and body forces.

As we move from one point to another, for example, from the lower-left corner to the upper-right
corner of the element, one stress component, say σx, acting on the negative x face, changes in value on
the positive x face. The stresses σy, τxy, and τyx similarly change. The variation of stress with position
may be expressed by a truncated Taylor’s expansion:

(a)
The partial derivative is used because σx is a function of x and y. Treating all the components

similarly, the state of stress shown in Fig. 1.9 is obtained.
We consider now the equilibrium of an element of unit thickness, taking moments of force about the
lower-left corner. Thus, ΣMz = 0 yields

Neglecting the triple products involving dx and dy, this reduces to τxy = τyx. In a like manner, it may
be shown that τyz = τzy and τxz = τzx, as already obtained in Section 1.5. From the equilibrium of x
forces, ΣFx = 0, we have

(b)
Upon simplification, Eq. (b) becomes

(c)

Inasmuch as dx dy is nonzero, the quantity in the parentheses must vanish. A similar expression is
written to describe the equilibrium of y forces. The x and y equations yield the following differential
equations of equilibrium for two-dimensional stress:

(1.13)

The differential equations of equilibrium for the case of three-dimensional stress may be generalized
from the preceding expressions as follows:

(1.14)
A succinct representation of these expressions, on the basis of the range and summation conventions
(Sec. 1.17), may be written as

Equilibrium of forces in the x and y directions requires that

(1.16)

where px and py are the components of stress resultant acting on AB in the x and y directions,
respectively. The normal and shear stresses on the x′ plane (AB plane) are obtained by projecting px
and py in the x′ and y′ directions:

(a)

From the foregoing it is clear that . Upon substitution of the stress resultants from
Eq. (1.16), Eqs. (a) become

(1.17a)

(1.17b)
Note that the normal stress σy′ acting on the y′ face of an inclined element (Fig. 1.11c) may readily be
obtained by substituting θ + π/2 for θ in the expression for σx′. In so doing, we have

(1.17c)

Equations (1.17) can be converted to a useful form by introducing the following trigonometric
identities:

The transformation equations for plane stress now become

(1.18a)
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(1.19). These are the principal directions, along which the principal or maximum and minimum
normal stresses act. Two values of θp, corresponding to the σ1 and σ2 planes, are represented by 
and , respectively.
When Eq. (1.18b) is compared with Eq. (a), it becomes clear that τx′y′ = 0 on a principal plane. A
principal plane is thus a plane of zero shear. The principal stresses are determined by substituting
Eq. (1.19) into Eq. (1.18a):

(1.20)

Note that the algebraically larger stress given here is the maximum principal stress, denoted by σ1.
The minimum principal stress is represented by σ2. It is necessary to substitute one of the values θp
into Eq. (1.18a) to determine which of the two corresponds to σ1.

Similarly, employing the preceding approach and Eq. (1.18b), we determine the planes of maximum
shearing stress. Thus, setting dτx′y′/dθ = 0, we now have (σx – σy)cos 2θ + 2τxy sin 2θ = 0 or

(1.21)

The foregoing expression defines two values of θs that are 90° apart. These directions may again be
denoted by attaching a prime or a double prime notation to θs. Comparing Eqs. (1.19) and (1.21), we
also observe that the planes of maximum shearing stress are inclined at 45° with respect to the planes
of principal stress. Now, from Eqs. (1.21) and (1.18b), we obtain the extreme values of shearing
stress as follows:

(1.22)
Here the largest shearing stress, regardless of sign, is referred to as the maximum shearing stress,
designated τmax. Normal stresses acting on the planes of maximum shearing stress can be determined
by substituting the values of 2θs from Eq. (1.21) into Eqs. (1.18a) and (1.18c):

(1.23)

The results are illustrated in Fig. 1.14. Note that the diagonal of a stress element toward which the
shearing stresses act is called the shear diagonal. The shear diagonal of the element on which the
maximum shearing stresses act lies in the direction of the algebraically larger principal stress as
shown in the figure. This assists in predicting the proper direction of the maximum shearing stress.

Figure 1.14. Planes of principal and maximum shearing stresses.

gives

Figure 1.13. Graph of normal stress σx′ and shearing stress τx′y′ with angle θ (for θ ≤ 180°).

In the foregoing, permitting θ to vary from 0° to 180° in increments of 15° leads to the data from
which the graphs illustrated in Fig. 1.13b are obtained [Ref. 1.7]. This Cartesian representation
demonstrates the variation of the normal and shearing stresses versus θ ≤ 180°. Observe that the
direction of maximum (and minimum) shear stress bisects the angle between the maximum and
minimum normal stresses. Moreover, the normal stress is either a maximum or a minimum on planes θ
= 31.7° and θ = 31.7° + 90°, respectively, for which the shear stress is zero. Note as a check that σx +
σy = σmax + σmin = 9 MPa, as expected.

The conclusions drawn from the foregoing polar and Cartesian representations are valid for any state
of stress, as will be seen in the next section. A more convenient approach to the graphical
transformation for stress is considered in Sections 1.11 and 1.15. The manner in which the three-
dimensional normal and shearing stresses vary is discussed in Sections 1.12 through 1.14.

1.10 Principal Stresses and Maximum In-Plane Shear Stress
The transformation equations for two-dimensional stress indicate that the normal stress σx′ and
shearing stress τx′y′ vary continuously as the axes are rotated through the angle θ. To ascertain the
orientation of x′y′ corresponding to maximum or minimum σx′, the necessary condition dσx′/dθ = 0 is
applied to Eq. (1.18a). In so doing, we have

(a)
This yields

(1.19)

Inasmuch as tan 2θ = tan(π + 2θ), two directions, mutually perpendicular, are found to satisfy Eq.
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1.11 Mohr’s Circle for Two-Dimensional Stress
A graphical technique, predicated on Eq. (1.18), permits the rapid transformation of stress from one
plane to another and leads also to the determination of the maximum normal and shear stresses. In this
approach, Eqs. (1.18) are depicted by a stress circle, called Mohr’s circle.* In the Mohr
representation, the normal stresses obey the sign convention of Section 1.5. However, for the
purposes only of constructing and reading values of stress from Mohr’s circle, the sign convention
for shear stress is as follows: If the shearing stresses on opposite faces of an element would produce
shearing forces that result in a clockwise couple, as shown in Fig. 1.15c, these stresses are regarded
as positive. Accordingly, the shearing stresses on the y faces of the element in Fig. 1.15a are taken as
positive (as before), but those on the x faces are now negative.

Figure 1.15. (a) Stress element; (b) Mohr’s circle of stress; (c) interpretation of positive
shearing stresses.

Given σx, σy, and τxy with algebraic sign in accordance with the foregoing sign convention, the
procedure for obtaining Mohr’s circle (Fig. 1.15b) is as follows:
1. Establish a rectangular coordinate system, indicating +τ and +σ. Both stress scales must be

identical.

2. Locate the center C of the circle on the horizontal axis a distance  from the origin.
3. Locate point A by coordinates σx and –τxy. These stresses may correspond to any face of an element

such as in Fig. 1.15a. It is usual to specify the stresses on the positive x face, however.
4. Draw a circle with center at C and of radius equal to CA.
5. Draw line AB through C.
The angles on the circle are measured in the same direction as θ is measured in Fig. 1.15a. An angle
of 2θ on the circle corresponds to an angle of θ on the element. The state of stress associated with the
original x and y planes corresponds to points A and B on the circle, respectively. Points lying on
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original x and y planes corresponds to points A and B on the circle, respectively. Points lying on
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5. Draw line AB through C.
The angles on the circle are measured in the same direction as θ is measured in Fig. 1.15a. An angle
of 2θ on the circle corresponds to an angle of θ on the element. The state of stress associated with the
original x and y planes corresponds to points A and B on the circle, respectively. Points lying on

Applying Eq. (1.18b) with the given data and 2θs = 55.2°, τx′y′ = –10.71 MPa. Hence, ,
and the stresses are shown in their proper directions in Fig. 1.18d.

1.12 Three-Dimensional Stress Transformation
The physical elements studied are always three dimensional, and hence it is desirable to consider
three planes and their associated stresses, as illustrated in Fig. 1.2. We note that equations governing
the transformation of stress in the three-dimensional case may be obtained by the use of a similar
approach to that used for the two-dimensional state of stress.
Consider a small tetrahedron isolated from a continuous medium (Fig. 1.19a), subject to a general
state of stress. The body forces are taken to be negligible. In the figure, px, py, and pz are the
Cartesian components of stress resultant p acting on oblique plane ABC. It is required to relate the
stresses on the perpendicular planes intersecting at the origin to the normal and shear stresses on
ABC.

Figure 1.19. Stress components on a tetrahedron.

The orientation of plane ABC may be defined in terms of the angles between a unit normal n to the
plane and the x, y, and z directions (Fig. 1.19b). The direction cosines associated with these angles
are

(1.24)
The three direction cosines for the n direction are related by

(1.25)

The area of the perpendicular plane QAB, QAC, QBC may now be expressed in terms of A, the area of
ABC, and the direction cosines:

AQAB = Ax = A · i = A(li + mj + nk) · i = Al

The other two areas are similarly obtained. In so doing, we have altogether

(a)

Here i, j, and k are unit vectors in the x, y, and z directions, respectively.
Next, from the equilibrium of x, y, z-directed forces together with Eq. (a), we obtain, after canceling
A,

(1.26)

The stress resultant on A is thus determined on the basis of known stresses σx, σy, σz, τxy, τxz, and τyz
and a knowledge of the orientation of A. In the limit as the sides of the tetrahedron approach zero,
plane A contains point Q. It is thus demonstrated that the stress resultant at a point is specified. This in
turn gives the stress components acting on any three mutually perpendicular planes passing through Q
as shown next. Although perpendicular planes have been used there for convenience, these planes
need not be perpendicular to define the stress at a point.
Consider now a Cartesian coordinate system x′, y′, z′, wherein x′ coincides with n and y′, z′ lie on an
oblique plane. The x′ y′ z′ and xyz systems are related by the direction cosines: l1 = cos (x′, x), m1 =
cos(x′, y), and so on. The notation corresponding to a complete set of direction cosines is shown in
Table 1.2. The normal stress σx′ is found by projecting px, py, and pz in the x′ direction and adding

(1.27)

Table 1.2. Notation for Direction Cosines

Equations (1.26) and (1.27) are combined to yield

(1.28a)

Similarly, by projecting px, py, and pz in the y′ and z′ directions, we obtain, respectively,

(1.28b)
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Here i, j, and k are unit vectors in the x, y, and z directions, respectively.
Next, from the equilibrium of x, y, z-directed forces together with Eq. (a), we obtain, after canceling
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The stress resultant on A is thus determined on the basis of known stresses σx, σy, σz, τxy, τxz, and τyz
and a knowledge of the orientation of A. In the limit as the sides of the tetrahedron approach zero,
plane A contains point Q. It is thus demonstrated that the stress resultant at a point is specified. This in
turn gives the stress components acting on any three mutually perpendicular planes passing through Q
as shown next. Although perpendicular planes have been used there for convenience, these planes
need not be perpendicular to define the stress at a point.
Consider now a Cartesian coordinate system x′, y′, z′, wherein x′ coincides with n and y′, z′ lie on an
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(d)

These proportionalities indicate that the stress resultant must be parallel to the unit normal and
therefore contains no shear component. It is concluded that, on a plane for which σx′ has an extreme or
principal value, a principal plane, the shearing stress vanishes.
It is now shown that three principal stresses and three principal planes exist. Denoting the principal
stresses by σp, Eq. (d) may be written as

(e)

These expressions, together with Eq. (1.26), lead to

(1.31)

A nontrivial solution for the direction cosines requires that the characteristic determinant vanish:

(1.32)
Expanding Eq. (1.32) leads to

(1.33)

where

(1.34a)

(1.34b)

(1.34c)
The three roots of the stress cubic equation (1.33) are the principal stresses, corresponding to which
are three sets of direction cosines, which establish the relationship of the principal planes to the
origin of the nonprincipal axes. The principal stresses are the characteristic values or eigenvalues of
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Octahedral plane:
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The normals of all faces make the same angle with x, y and z axes.

�
Octahedral normal stress:
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Octahedral shearing stress:
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the stress tensor τij. Since the stress tensor is a symmetric tensor whose elements are all real, it has
real eigenvalues. That is, the three principal stresses are real [Refs. 1.8 and 1.9]. The direction
cosines l, m, and n are the eigenvectors of τij.

It is clear that the principal stresses are independent of the orientation of the original coordinate
system. It follows from Eq. (1.33) that the coefficients I1, I2, and I3 must likewise be independent of
x, y, and z, since otherwise the principal stresses would change. For example, we can demonstrate
that adding the expressions for σx′, σy′, and σz′ given by Eq. (1.28) and making use of Eq. (1.30a) leads
to I1 = σx′ + σy′ + σz′ = σx + σy + σz. Thus, the coefficients I1, I2, and I3 represent three invariants of the
stress tensor in three dimensions or, briefly, the stress invariants. For plane stress, it is a simple
matter to show that the following quantities are invariant (Prob. 1.27):

(1.35)

Equations (1.34) and (1.35) are particularly helpful in checking the results of a stress transformation,
as illustrated in Example 1.7.
If now one of the principal stresses, say σ1 obtained from Eq. (1.33), is substituted into Eq. (1.31), the
resulting expressions, together with l2 + m2 + n2 = 1, provide enough information to solve for the
direction cosines, thus specifying the orientation of σ1 relative to the xyz system. The direction
cosines of σ2 and σ3 are similarly obtained. A convenient way of determining the roots of the stress
cubic equation and solving for the direction cosines is presented in Appendix B, where a related
computer program is also included (see Table B.1).

Example 1.6. Three-Dimensional Stress in a Hub
A steel shaft is to be force fitted into a fixed-ended cast-iron hub. The shaft is subjected to a
bending moment M, a torque T, and a vertical force P, Fig. 1.20a. Suppose that at a point Q in the
hub, the stress field is as shown in Fig. 1.20b, represented by the matrix

Figure 1.20. Example 1.6. (a) Hub-shaft assembly. (b) Element in three-dimensional stress.

Octahedral Stresses
The stresses acting on an octahedral plane is represented by face ABC in Fig. 1.22b with QA = QB =
QC. The normal to this oblique face thus has equal direction cosines relative to the principal axes.
Since l2 + m2 + n2 = 1, we have

(b)
Plane ABC is clearly one of eight such faces of a regular octahedron (Fig. 1.24). Equations (1.39) and
(b) are now applied to provide an expression for the octahedral shearing stress, which may be
rearranged to the form

(1.43)

Figure 1.24. Stresses on an octahedron.

Through the use of Eqs. (1.37) and (b), we obtain the octahedral normal stress:

(1.44)
The normal stress acting on an octahedral plane is thus the average of the principal stresses, the mean
stress. The orientations of σoct and τoct are indicated in Fig. 1.24. That the normal and shear stresses
are the same for the eight planes is a powerful tool for failure analysis of ductile materials (see Sec.
4.8). Another useful form of Eq. (1.43) is developed in Section 2.15.
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1.15 Mohr’s Circles in Three Dimensions
Consider a wedge shown in Fig. 1.25a, cut from the cubic element subjected to triaxial stresses (Fig.
1.22a). The only stresses on the inclined x′ face (parallel to the z axis) are the normal stress σx′ and
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(b)
Plane ABC is clearly one of eight such faces of a regular octahedron (Fig. 1.24). Equations (1.39) and
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rearranged to the form

(1.43)

Figure 1.24. Stresses on an octahedron.

Through the use of Eqs. (1.37) and (b), we obtain the octahedral normal stress:
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The normal stress acting on an octahedral plane is thus the average of the principal stresses, the mean
stress. The orientations of σoct and τoct are indicated in Fig. 1.24. That the normal and shear stresses
are the same for the eight planes is a powerful tool for failure analysis of ductile materials (see Sec.
4.8). Another useful form of Eq. (1.43) is developed in Section 2.15.

1.15 Mohr’s Circles in Three Dimensions
Consider a wedge shown in Fig. 1.25a, cut from the cubic element subjected to triaxial stresses (Fig.
1.22a). The only stresses on the inclined x′ face (parallel to the z axis) are the normal stress σx′ and
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the shear stress τx′y′ acting in the x′y′ plane. Inasmuch as the foregoing stresses are determined from
force equilibrium equations in the x′y′ plane, they are independent of the stress σ3. Thus, the
transformation equations of plane stress (Sec. 1.9) and Mohr’s circle can be employed to obtain the
stresses σx′ and τx′y′. The foregoing conclusion is also valid for normal and shear stresses acting on
inclined faces cut through the element parallel to the x and y axes.

Figure 1.25. Triaxial state of stress: (a) wedge; (b) planes of maximum shear stress.

The stresses acting on elements oriented at various angles to the principal axes can be visualized with
the aid of Mohr’s circle. The cubic element (Fig. 1.22a) viewed from three different directions is
sketched in Figs. 1.26a to c. A Mohr’s circle is drawn corresponding to each projection of an
element. The cluster of three circles represents Mohr’s circles for triaxial stress (Fig. 1.26d). The
radii of the circles are equal to the maximum shear stresses, as indicated in the figure. The normal
stresses acting on the planes of maximum shear stresses have the magnitudes given by the abscissa as
of the centers of the circles.
Figure 1.26. (a–c) Views of elements in triaxial stresses on different principal axes; (d) Mohr’s

circles for three-dimensional stress.
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equations.
Figure P1.26.

1.27. By means of Mohr’s circle, verify the results given by Eqs. (1.35).
1.28. An element in plane stress (Fig. 1.3b) is subjected to stresses σx = 50 MPa, σy = –190 MPa,

and τxy = –70 MPa. Determine the principal stresses and show them on a sketch of a properly
oriented element.

1.29. For an element in plane stress (Fig. 1.3b), the normal stresses are σx = 60 MPa and σy = –
100 MPa. What is the maximum permissible value of shearing stress τxy if the shearing stress
in the material is not to exceed 140 MPa?

1.30. The state of stress on an element oriented at θ = 60° is shown in Fig. P1.30. Calculate the
normal and shearing stresses on an element oriented at θ = 0°.

Figure P1.30.

1.31. A thin skewed plate is subjected to a uniform distribution of stress along its sides, as shown
in Fig. P1.31. Calculate (a) the stresses σx, σy, σxy, and (b) the principal stresses and their
orientations.

Figure P1.31.

1.32. The stress acting uniformly over the sides of a rectangular block is shown in Fig. P1.32.
Calculate the stress components on planes parallel and perpendicular to mn. Show the results
on a properly oriented element.

Figure P1.32.

1.33. Redo Prob. 1.31 for the stress distribution shown in Fig. P1.33.
Figure P1.33.

1.34. A thin-walled cylindrical tank of radius r is subjected simultaneously to internal pressure p
and a compressive force P through rigid end plates. Determine the magnitude of force P to
produce pure shear in the cylindrical wall.

1.35. A thin-walled cylindrical pressure vessel of radius 120 mm and a wall thickness of 5 mm is
subjected to an internal pressure of p = 4 MPa. In addition, an axial compression load of P =
30π kN and a torque of T = 10π kN · m are applied to the vessel through the rigid end plates
(Fig. P1.35). Determine the maximum shearing stresses and associated normal stresses in the
cylindrical wall. Show the results on a properly oriented element.

Figure P1.35.

1.36. A pressurized thin-walled cylindrical tank of radius r = 60 mm and wall thickness t = 4 mm
is acted on by end torques T = 600 N · m and tensile forces P (Fig. P1.35 with sense of P
reversed). The internal pressure is p = 5 MPa. Calculate the maximum permissible value of P
if the allowable tensile stress in the cylinder wall is 80 MPa.

1.37. A shaft of diameter d carries an axial compressive load P and two torques T1, T2 (Fig.
P1.37). Determine the maximum shear stress at a point A on the surface of the shaft. Given: d
= 100 mm, P = 400 kN, T1 = 10 kN · m, and T2 = 2 kN · m.

Figure P1.37.
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Figure P1.32.
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cylindrical wall. Show the results on a properly oriented element.
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1.36. A pressurized thin-walled cylindrical tank of radius r = 60 mm and wall thickness t = 4 mm
is acted on by end torques T = 600 N · m and tensile forces P (Fig. P1.35 with sense of P
reversed). The internal pressure is p = 5 MPa. Calculate the maximum permissible value of P
if the allowable tensile stress in the cylinder wall is 80 MPa.

1.37. A shaft of diameter d carries an axial compressive load P and two torques T1, T2 (Fig.
P1.37). Determine the maximum shear stress at a point A on the surface of the shaft. Given: d
= 100 mm, P = 400 kN, T1 = 10 kN · m, and T2 = 2 kN · m.

Figure P1.37.

1.38. What are the normal and shearing stresses on the spiral weld of the aluminum shaft of
diameter d subjected to an axial load P and a torque T (Fig. P1.38)? Given: P = 120 kN, T =
1.5 kN · m, d = 40 mm, and φ = 50°.

Figure P1.38.

1.39. A hollow generator shaft of 180-mm outer diameter and 120-mm inner diameter carries
simultaneously a torque T = 20 kN · m and axial compressive load P = 700 kN. What is the
maximum tensile stress?

1.40. A cantilever beam of thickness t is subjected to a constant traction τ0 (force per unit area) at
its upper surface, as shown in Fig. P1.40. Determine, in terms of τ0, h, and L, the principal
stresses and the maximum shearing stress at the corner points A and B.

Figure P1.40.

1.41. A hollow shaft of 60-mm outer diameter and 30-mm inner diameter is acted on by an axial
tensile load of 50 kN, a torque of 500 N · m and a bending moment of 200 N · m Use Mohr’s
circle to determine the principal stresses and their directions.

1.42. Given the stress acting uniformly over the sides of a thin, flat plate (Fig. P1.42), determine
(a) the stresses on planes inclined at 20° to the horizontal and (b) the principal stresses and
their orientations.

Figure P1.42.

1.38. What are the normal and shearing stresses on the spiral weld of the aluminum shaft of
diameter d subjected to an axial load P and a torque T (Fig. P1.38)? Given: P = 120 kN, T =
1.5 kN · m, d = 40 mm, and φ = 50°.

Figure P1.38.

1.39. A hollow generator shaft of 180-mm outer diameter and 120-mm inner diameter carries
simultaneously a torque T = 20 kN · m and axial compressive load P = 700 kN. What is the
maximum tensile stress?

1.40. A cantilever beam of thickness t is subjected to a constant traction τ0 (force per unit area) at
its upper surface, as shown in Fig. P1.40. Determine, in terms of τ0, h, and L, the principal
stresses and the maximum shearing stress at the corner points A and B.

Figure P1.40.

1.41. A hollow shaft of 60-mm outer diameter and 30-mm inner diameter is acted on by an axial
tensile load of 50 kN, a torque of 500 N · m and a bending moment of 200 N · m Use Mohr’s
circle to determine the principal stresses and their directions.

1.42. Given the stress acting uniformly over the sides of a thin, flat plate (Fig. P1.42), determine
(a) the stresses on planes inclined at 20° to the horizontal and (b) the principal stresses and
their orientations.

Figure P1.42.

1.43. A steel shaft of radius r = 75 mm is subjected to an axial compression P = 81 kN, a twisting
couple T = 15.6 kN · m, and a bending moment M = 13 kN · m at both ends. Calculate the
magnitude of the principal stresses, the maximum shear stress, and the planes on which they
act in the shaft.

1.44. A structural member is subjected to a set of forces and moments. Each separately produces
the stress conditions at a point shown in Fig. P1.44. Determine the principal stresses and their
orientations at the point under the effect of combined loading.

Figure P1.44.

1.45. Redo Prob. 1.44 for the case shown in Fig. P1.45.
Figure P1.45.

1.46. Redo Prob. 1.44 for the case shown in Fig. P1.46.
Figure P1.46.

1.47. The shearing stress at a point in a loaded structure is τxy = 40 MPa. Also, it is known that the
principal stresses at this point are σ1 = 40 MPa and σ2 = –60 MPa. Determine σx
(compression) and σy and indicate the principal and maximum shearing stresses on an
appropriate sketch.
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1.53. A thin-walled cylindrical tank is subjected to an internal pressure p and uniform axial tensile
load P (Fig. P1.53). The radius and thickness of the tank are r = 0.45 m and t = 5 mm. The
normal stresses at a point A on the surface of the tank are restricted to σx′ = 84 MPa and σy′ =
56 MPa, while shearing stress τx′y′ is not specified. Determine the values of p and P. Use θ =
30°.

Figure P1.53.

1.54. For a given state of stress at a point in a frame, certain stress components are known for each
of the two orientations shown in Fig. P1.54. Using Mohr’s circle, determine the following
stress components: (a) τxy and (b) τx′y′ and σy′.

Figure P1.54.

1.55. The state of stress at a point in a machine member is shown in Fig. P1.55. The allowable
compression stress at the point is 14 MPa. Determine (a) the tensile stress σx and (b) the
maximum principal and maximum shearing stresses in the member. Sketch the results on
properly oriented elements.

Figure P1.55.

1.56. In Example 1.3, taking σz = 0, investigate the maximum shearing stresses on all possible
(three-dimensional) planes.

1.57. A thin-walled pressure vessel of 60-mm radius and 4-mm thickness is made from spirally
welded pipe and fitted with two rigid end plates (Fig. P1.57). The vessel is subjected to an
internal pressure of p = 2 MPa and a P = 50 kN a axial load. Calculate (a) the normal stress
perpendicular to the weld; (b) the shearing stress parallel to the weld.

Figure P1.57.

1.58. A thin-walled cylindrical pressure vessel of 0.3-m radius and 6-mm wall thickness has a
welded spiral seam at an angle of φ = 30° with the axial direction (Fig. P1.10). The vessel is
subjected to an internal gage pressure of p Pa and an axial compressive load of P = 9π kN
applied through rigid end plates. Find the allowable value of p if the normal and shearing
stresses acting simultaneously in the plane of welding are limited to 21 and 7 MPa,
respectively.

Sections 1.12 and 1.13
1.59. The state of stress at a point in an x, y, z coordinate system is

Determine the stresses and stress invariants relative to the x′, y′, z′ coordinate system defined
by rotating x, y through an angle of 30° counterclockwise about the z axis.

1.60. Redo Prob. 1.59 for the case in which the state of stress at a point in an x, y, z coordinate
system is

1.61. The state of stress at a point relative to an x, y, z coordinate system is given by

Calculate the maximum shearing stress at the point.
1.62. At a point in a loaded member, the stresses relative to an x, y, z coordinate system are given

by

Calculate the magnitude and direction of maximum principal stress.
1.63. For the stresses given in Prob. 1.59, calculate the maximum shearing stress.
1.64. At a specified point in a member, the state of stress with respect to a Cartesian coordinate

system is given by

Calculate the magnitude and direction of the maximum principal stress.
1.65. At a point in a loaded structure, the stresses relative to an x, y, z coordinate system are given

by

Determine by expanding the characteristic stress determinant: (a) the principal stresses; (b)
the direction cosines of the maximum principal stress.

1.66. The stresses (in megapascals) with respect to an x, y, z coordinate system are described by

At point (3, 1, 5), determine (a) the stress components with respect to x′, y′, z′ if

and (b) the stress components with respect to x″, y″, z″ if , , and n3 = 1.
Show that the quantities given by Eq. (1.34) are invariant under the transformations (a) and
(b).

1.67. Determine the stresses with respect to the x′, y′, z′ axes in the element of Prob. 1.64 if

1.68. For the case of plane stress, verify that Eq. (1.33) reduces to Eq. (1.20).
1.69. Obtain the principal stresses and the related direction cosines for the following cases:

a. 

b. 

Calculate the magnitude and direction of maximum principal stress.
1.63. For the stresses given in Prob. 1.59, calculate the maximum shearing stress.
1.64. At a specified point in a member, the state of stress with respect to a Cartesian coordinate

system is given by

Calculate the magnitude and direction of the maximum principal stress.
1.65. At a point in a loaded structure, the stresses relative to an x, y, z coordinate system are given

by

Determine by expanding the characteristic stress determinant: (a) the principal stresses; (b)
the direction cosines of the maximum principal stress.

1.66. The stresses (in megapascals) with respect to an x, y, z coordinate system are described by

At point (3, 1, 5), determine (a) the stress components with respect to x′, y′, z′ if

and (b) the stress components with respect to x″, y″, z″ if , , and n3 = 1.
Show that the quantities given by Eq. (1.34) are invariant under the transformations (a) and
(b).

1.67. Determine the stresses with respect to the x′, y′, z′ axes in the element of Prob. 1.64 if

1.68. For the case of plane stress, verify that Eq. (1.33) reduces to Eq. (1.20).
1.69. Obtain the principal stresses and the related direction cosines for the following cases:

a. 

b. 

Determine the normal stress σ and the shearing stress τ on the surface intersecting the point
and parallel to the plane: 2x + y – 3z = 9.

1.73. For the stresses given in Prob. 1.62, calculate the normal stress σ and the shearing stress τ on
a plane whose outward normal is oriented at angles 35°, 60°, and 73.6° with the x, y, and z
axes, respectively.

1.74. At a point in a loaded body, the stresses relative to an x, y, z coordinate system are

Determine the normal stress σ and the shearing stress τ on a plane whose outward normal is
oriented at angles of 40°, 75°, and 54° with the x, y, and z axes, respectively.

1.75. Determine the magnitude and direction of the maximum shearing stress for the cases given in
Prob. 1.69.

1.76. The stresses at a point in a loaded machine bracket with respect to the x, y, z axes are given
as

Determine (a) the octahedral stresses; (b) the maximum shearing stresses.
1.77. The state of stress at a point in a member relative to an x, y, z coordinate system is given by

Calculate (a) the principal stresses by expansion of the characteristic stress determinant; (b)
the octahedral stresses and the maximum shearing stress.

1.78. Given the principal stresses σ1, σ2, and σ3 at a point in an elastic solid, prove that the
maximum shearing stress at the point always exceeds the octahedral shearing stress.

1.79. Determine the value of the octahedral stresses of Prob. 1.64.
1.80. By using Eq. (1.38b), verify that the planes of maximum shearing stress in three dimensions

bisect the planes of maximum and minimum principal stresses. Also find the normal stresses
associated with the shearing plane by applying Eq. (1.37).

1.81. A point in a structural member is under three-dimensional stress with σx = 100 MPa, σy = 20
MPa, τxy = 60 MPa, and σz, as shown in Fig. P1.81. Calculate (a) the absolute maximum shear
stress for σz = 30 MPa; (b) the absolute maximum shear stress for σz = –30 MPa.

Figure P1.81.
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Now consider the change experienced by right angle DAB (Fig. 2.4b). We shall assume the angle αx
between AB and A′B′ to be so small as to permit the approximation αx ≈ tan αx. Also, in view of the
smallness of αx, the normal strain is small, so AB ≈ A′B′. As a consequence of the aforementioned
considerations, αx ≈ ∂v/∂x, where the counterclockwise rotation is defined as positive. Similar
analysis leads to –αy ≈ ∂u/∂y. The total angular change of angle DAB, the angular change between
lines in the x and y directions, is defined as the shearing strain and denoted by γxy:

(2.3b)
The shear strain is positive when the right angle between two positive (or negative) axes decreases.
That is, if the angle between +x and +y or –x and –y decreases, we have positive γxy; otherwise the
shear strain is negative.

Three-Dimensional Strain
In the case of a three-dimensional element, a rectangular prism with sides dx, dy, dz, an essentially
identical analysis leads to the following normal and shearing strains:

(2.4)

Clearly, the angular change is not different if it is said to occur between the x and y directions or
between the y and x directions; γxy = γyx. The remaining components of shearing strain are similarly
related:

The symmetry of shearing strains may also be deduced from an examination of Eq. (2.4). The
expressions (2.4) are the strain–displacement relations of continuum mechanics. They are also
referred to as the kinematic relations, treating the geometry of strain rather than the matter of cause
and effect.
A succinct statement of Eq. (2.3) is made possible by tensor notation:

(2.5a)

or expressed more concisely by using commas,

(2.5b)

where ux = u, uy = v, xx = x, and so on. The factor  in Eq. (2.5) facilitates the representation of the
strain transformation equations in indicial notation. The longitudinal strains are obtained when i = j;

Now consider the change experienced by right angle DAB (Fig. 2.4b). We shall assume the angle αx
between AB and A′B′ to be so small as to permit the approximation αx ≈ tan αx. Also, in view of the
smallness of αx, the normal strain is small, so AB ≈ A′B′. As a consequence of the aforementioned
considerations, αx ≈ ∂v/∂x, where the counterclockwise rotation is defined as positive. Similar
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(2.3b)
The shear strain is positive when the right angle between two positive (or negative) axes decreases.
That is, if the angle between +x and +y or –x and –y decreases, we have positive γxy; otherwise the
shear strain is negative.

Three-Dimensional Strain
In the case of a three-dimensional element, a rectangular prism with sides dx, dy, dz, an essentially
identical analysis leads to the following normal and shearing strains:

(2.4)

Clearly, the angular change is not different if it is said to occur between the x and y directions or
between the y and x directions; γxy = γyx. The remaining components of shearing strain are similarly
related:

The symmetry of shearing strains may also be deduced from an examination of Eq. (2.4). The
expressions (2.4) are the strain–displacement relations of continuum mechanics. They are also
referred to as the kinematic relations, treating the geometry of strain rather than the matter of cause
and effect.
A succinct statement of Eq. (2.3) is made possible by tensor notation:

(2.5a)

or expressed more concisely by using commas,

(2.5b)

where ux = u, uy = v, xx = x, and so on. The factor  in Eq. (2.5) facilitates the representation of the
strain transformation equations in indicial notation. The longitudinal strains are obtained when i = j;

the shearing strains are found when i ≠ j and εij = εji. It is apparent from Eqs. (2.4) and (2.5) that

(2.6)
Just as the state of stress at a point is described by a nine-term array, so Eq. (2.5) represents nine
strains composing the symmetric strain tensor (εij = εji):

(2.7)

It is interesting to observe that the Cartesian coordinate systems of Chapters 1 and 2 are not identical.
In Chapter 1, the equations of statics pertain to the deformed state, and the coordinate set is thus
established in a deformed body; xyz is, in this instance, a Eulerian coordinate system. In discussing
the kinematics of deformation in this chapter, recall that the xyz set is established in the undeformed
body. In this case, xyz is referred to as a Lagrangian coordinate system. Although these systems are
clearly not the same, the assumption of small deformation permits us to regard x, y, and z, the
coordinates in the undeformed body, as applicable to equations of stress or strain. Choice of the
Lagrangian system should lead to no errors of consequence unless applications in finite elasticity or
large deformation theory are attempted. Under such circumstances, the approximation discussed is not
valid, and the resulting equations are more difficult to formulate [Refs. 2.1 and 2.2].
Throughout the text, strains are indicated as dimensionless quantities. The normal and shearing strains
are also frequently described in terms of units such as inches per inch or micrometers per meter and
radians or microradians, respectively. The strains for engineering materials in ordinary use seldom
exceed 0.002, which is equivalent to 2000 × 10–6 or 2000 µ. We read this as “2000 micros.”

Example 2.1. Plane Strains in a Plate

A 0.8-m by 0.6-m rectangle ABCD is drawn on a thin plate prior to loading. Subsequent to
loading, the deformed geometry is shown by the dashed lines in Fig. 2.5. Determine the
components of plane strain at point A.

Figure 2.5. Example 2.1. Deformation of a thin plate.

Solution

The following approximate version of the strain–displacement relations of Eqs. (2.3) must be
used:

the shearing strains are found when i ≠ j and εij = εji. It is apparent from Eqs. (2.4) and (2.5) that
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(2.7)

It is interesting to observe that the Cartesian coordinate systems of Chapters 1 and 2 are not identical.
In Chapter 1, the equations of statics pertain to the deformed state, and the coordinate set is thus
established in a deformed body; xyz is, in this instance, a Eulerian coordinate system. In discussing
the kinematics of deformation in this chapter, recall that the xyz set is established in the undeformed
body. In this case, xyz is referred to as a Lagrangian coordinate system. Although these systems are
clearly not the same, the assumption of small deformation permits us to regard x, y, and z, the
coordinates in the undeformed body, as applicable to equations of stress or strain. Choice of the
Lagrangian system should lead to no errors of consequence unless applications in finite elasticity or
large deformation theory are attempted. Under such circumstances, the approximation discussed is not
valid, and the resulting equations are more difficult to formulate [Refs. 2.1 and 2.2].
Throughout the text, strains are indicated as dimensionless quantities. The normal and shearing strains
are also frequently described in terms of units such as inches per inch or micrometers per meter and
radians or microradians, respectively. The strains for engineering materials in ordinary use seldom
exceed 0.002, which is equivalent to 2000 × 10–6 or 2000 µ. We read this as “2000 micros.”

Example 2.1. Plane Strains in a Plate

A 0.8-m by 0.6-m rectangle ABCD is drawn on a thin plate prior to loading. Subsequent to
loading, the deformed geometry is shown by the dashed lines in Fig. 2.5. Determine the
components of plane strain at point A.

Figure 2.5. Example 2.1. Deformation of a thin plate.

Solution

The following approximate version of the strain–displacement relations of Eqs. (2.3) must be
used:

(2.12)

These equations were first derived by Saint-Venant in 1860. The application of the equations of
compatibility is illustrated in Example 2.2(a) and in various sections that use the method of the theory
of elasticity.
To gain further insight into the meaning of compatibility, imagine an elastic body subdivided into a
number of small cubic elements prior to deformation. These cubes may, upon loading, be deformed
into a system of parallelepipeds. The deformed system will, in general, be impossible to arrange in
such a way as to compose a continuous body unless the components of strain satisfy the equations of
compatibility.

2.5 State of Strain at a Point
Recall from Chapter 1 that, given the components of stress at a point, it is possible to determine the
stresses on any plane passing through the point. A similar operation pertains to the strains at a point.
Consider a small linear element AB of length ds is an unstrained body (Fig. 2.6a). The projections of
the element on the coordinate axes are dx and dy. After straining, AB is displaced to position A′B′ and
is now ds′ long. The x and y displacements are u + du and v + dv, respectively. The variation with
position of the displacement is expressed by a truncated Taylor’s expansion as follows:

(a)

Figure 2.6. Plane straining of an element.

Figure 2.6b shows the relative displacement of B with respect to A, the straining of AB. It is observed
that AB has been translated so that A coincides with A′; it is now in the position A′B″. Here B″ D = du
and DB′ = dv are the components of displacement.

Transformation of Two-Dimensional Strain
We now choose a new coordinate system x′ y′, as shown in Fig. 2.6, and examine the components of

strain with respect to it: εx′, εy′, γx′y′. First we determine the unit elongation of ds′, εx′. The projections
of du and dv on the x′ axis, after taking EB′ cos α = EB′(1) by virtue of the small angle approximation,
lead to the approximation (Fig. 2.6b)

(b)
By definition, εx′ is found from EB′/ds. Thus, applying Eq. (b) together with Eqs. (a), we obtain

Substituting cos θ for dx/ds, sin θ for dy/ds, and Eq. (2.3) into this equation, we have

(2.13a)

This represents the transformation equation for the x-directed normal strain, which, through the use of
trigonometric identities, may be converted to the form

(2.14a)
The normal strain εy′ is determined by replacing θ by θ + π/2 in Eq. (2.14a).

To derive an expression for the shearing strain γx′y′, we first determine the angle α through which AB
(the x′ axis) is rotated. Referring again to Fig. 2.6b, tan α = B″ E/ds, where B″E = dv cos θ – du sin θ
– EB′ sin α. By letting sin α = tan α = α, we have EB′ sin α = εx′ ds α = 0. The latter is a consequence
of the smallness of both εx′ and α. Substituting Eqs. (a) and (2.3) into B″E, α = B″ E/ds may be written
as follows:

(c)
Next, the angular displacement of y′ is readily derived by replacing θ by θ + π/2 in Eq. (c):

Now, taking counterclockwise rotations to be positive (see Fig. 2.4b), it is necessary, in finding the
shear strain γx′y′, to add α and –αθ + π/2. By so doing and substituting γxy = ∂v/∂x + ∂u/∂y, we obtain

(2.13b)

Through the use of trigonometric identities, this expression for the transformation of the shear strain
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(2.14b)
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Comparison of Eqs. (1.18) with Eqs. (2.14), the two-dimensional transformation equations of strain,
reveals an identity of form. It is observed that transformations expressions for stress are converted
into strain relationships by replacing

These substitutions can be made in all the analogous relations. For instance, the principal strain
directions (where γx′y′ = 0) are found from Eq. (1.19):

(2.15)

Similarly, the magnitudes of the principal strains are

(2.16)

The maximum shearing strains are found on planes 45° relative to the principal planes and are given
by

(2.17)

Transformation of Three-Dimensional Strain
This case may also proceed from the corresponding stress relations by replacing σ by ε and τ by γ/2.
Therefore, using Eqs. (1.28), we have
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where l1 is the cosine of the angle between x and x′, m1 is the cosine of the angle between y and x′,
and so on (see Table 1.2). The foregoing equations are succinctly expressed, referring to Eqs. (1.29),
as follow:

(2.19a)

Conversely,

(2.19b)
These equations represent the law of transformation for a strain tensor of rank 2.
Also, referring to Eqs. (1.33) and (1.34), the principal strains in three dimensions are the roots of the
following cubic equation:

(2.20)
The strain invariants are

(2.21)

For a given state of strain, the three roots ε1, ε2, and ε3 of Eqs. (2.20) and the corresponding direction
cosines may conveniently be computed using Table B.1 with some notation modification.

Example 2.2. Three-Dimensional Strain in a Block
A 2-m by 1.5-m by 1-m parallelepiped is deformed by movement of corner point A to A′ (1.9985,
1.4988, 1.0009), as shown by the dashed lines in Fig. 2.7. Calculate the following quantities at
point A: (a) the strain components; (b) the normal strain in the direction of line AB; and (c) the
shearing strain for perpendicular lines AB and AC.

Figure 2.7. Example 2.2. Deformation of a parallelpiped.
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Example 2.2. Three-Dimensional Strain in a Block
A 2-m by 1.5-m by 1-m parallelepiped is deformed by movement of corner point A to A′ (1.9985,
1.4988, 1.0009), as shown by the dashed lines in Fig. 2.7. Calculate the following quantities at
point A: (a) the strain components; (b) the normal strain in the direction of line AB; and (c) the
shearing strain for perpendicular lines AB and AC.

Figure 2.7. Example 2.2. Deformation of a parallelpiped.

When unloaded at a point A beyond E, the material follows the line AB on the curve (Fig. 2.14b). The
slope of this line is parallel to the tangent to the stress–strain curve at the origin. Note that ε does not
return to zero after the load has been removed. This means that a residual strain or permanent strain
remains in the material. The corresponding elongation of the specimen is called permanent set. The
property of a material that experiences strains beyond those at the elastic limit is called the plasticity.
On the stress–strain curve, an elastic range is therefore followed by a plastic region (Fig. 2.14a), in
which total recovery of the size and shape of a material does not occur.
Upon reloading (BA), the unloading path is retracted and further loading results in a continuation of
the original stress–strain curve. It is seen that the material behaves in a linearly elastic manner in this
second loading. There is now proportional limit (A) that is higher than before but reduced ductility,
inasmuch as the amount of yielding from E to F is less than from A to F. This process can be repeated
until the material becomes brittle and fractures. A significant implication of the preceding is that the
strength and ductility characteristics of metals change considerably during fabrication process
involving cold working.
A final point to be noted is that, so far, we discussed the behavior of a test specimen subjected to only
static loading; passage of time and change in temperatures did not enter into our considerations.
However, under certain circumstances, some materials may continue to deform permanently. On the
contrary, a loss of stress is observed with time though strain level remains constant in a load-carrying
member. The study of material behavior under various loading and environmental conditions is taken
up in Chapters 4 and 12.

2.9 Hooke’s Law and Poisson’s Ratio
Most structural materials exhibit an initial region of the stress–strain diagram in which the material
behaves both elastically and linearly. This linear elasticity is extremely important in engineering
because many structures and machines are designed to experience relatively small deformations. For
that straight-line portion of the diagram (Fig. 2.10a), stress is directly proportional to strain. If the
normal stress acts in the x direction,

(2.26)

This relationship is known as Hooke’s law, after Robert Hooke (1635–1703). The constant E is
called the modulus of elasticity, or Young’s modulus, in honor of Thomas Young (1773–1829). As ε
is a dimensionless quantity, E has the units of σ. Thus, E is expressed in pascals (or gigapascals) in SI
units and in pounds (or kilo-pounds) per square inch in the U.S. Customary System. Graphically, E is
the slope of the stress–strain diagram in the linearly elastic region, as shown Fig. 2.10a. It differs
from material to material. For most materials, E in compression is the same as that in tension (Table
D.1).
Elasticity can similarly be measured in two-dimensional pure shear (Fig. 1.3c). It is found
experimentally that, in the linearly elastic range, stress and strain are related by Hooke’s law in
shear:

(2.27)

Here G is the shear modulus of elasticity or modulus of rigidity. Like E, G is a constant for a given
material.
It was stated in Section 2.7 that axial tensile loading induces a reduction or lateral contraction of a
specimen’s cross-sectional area. Similarly, a contraction owing to an axial compressive load is
accompanied by a lateral extension. In the linearly elastic region, it is found experimentally that
lateral strains, say in the y and z directions, are related by a constant of proportionality, v, to the axial
strain caused by uniaxial stress only εx = σx/E, in the x direction:

(a)

Alternatively, the definition of v may be stated as

(2.28)

Here v is known as Poisson’s ratio, after S. D. Poisson (1781–1840), who calculated v to be  for
isotropic materials employing molecular theory. Note that more recent calculations based on a model
of atomic structure yield . Both values given here are close to the actual measured values, 0.25
to 0.35 for most metals. Extreme cases range from a low of 0.1 (for some concretes) to a high of 0.5
(for rubber).

Volume Change
The lateral contraction of a cubic element from a bar in tension is illustrated in Fig. 2.15, where it is
assumed that the faces of the element at the origin are fixed in position. From the figure, subsequent to
straining, the final volume is

(b)
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(b)

Figure 2.15. Lateral contraction of an element in tension.

Expanding the right side and neglecting higher-order terms involving  and , we have
Vf = [1 + (εx – 2νεx)]dx dy dz = Vo + ∆V

where Vo is the initial volume dx dy dz and ∆V is the change in volume. The unit volume change e,
also referred to as the dilatation, may now be expressed in the form

(2.29)

Observe from this equation that a tensile force increases and a compressive force decreases the
volume of the element.

Example 2.4. Deformation of a Tension Bar

An aluminum alloy bar of circular cross-sectional area A and length L is subjected to an axial
tensile force P (Fig. 2.16). The modulus of elasticity and Poisson’s ratio of the material are E and
v, respectively. For the bar, determine (a) the axial deformation; (b) the change in diameter d; and
(c) the change in volume ∆V. (d) Evaluate the numerical values of the quantities obtained in (a)
through (c) for the case in which P = 60 kN, d = 25 mm, L = 3 m, E = 70 GPa, ν = 0.3, and the
yield strength σyp = 260 MPa.

Figure 2.16. Example 2.4. A bar under tensile forces.

Solution
If the resulting axial stress σ = P/A does not exceed the proportional limit of the material, we may
apply Hooke’s law and write σ = Eε. Also, the axial strain is defined by ε = δ/L.
a. The preceding expressions can be combined to yield the axial deformation,

(2.30)

where the product AE is known as the axial rigidity of the bar.
b. The change in diameter equals the product of transverse or lateral strain and diameter: εtd = –

νεd. Thus,

(2.31a)

c. The change in volume, substituting Vo = AL and εx = P/AE into Eq. (2.29), is

(2.31b)

d. For A = (π/4)(252) = 490.9(10–6) m2, the axial stress σ in the bar is obtained from

which is well below the yield strength of 260 MPa. Thus, introducing the given data into the
preceding equations, we have

Comment
A positive sign indicates an increase in length and volume; the negative sign means that the
diameter has decreased.

2.10 Generalized Hooke’s Law
For a three-dimensional state of stress, each of the six stress components is expressed as a linear
function of six components of strain within the linear elastic range, and vice versa. We thus express
the generalized Hooke’s law for any homogeneous elastic material as follows:

(2.32)
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Here, p is hydrostatic pressure.
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Strain energy density (strain energy for unit volume) for uniaxial case:

�
Total strain energy for triaxial stress state:
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Strain energy density for pure shear:
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Strain energy density for 3D stress state:
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Strain energy for an axially loaded bar:
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(2.34)

It is demonstrated next that the elastic constants E, v, and G are related, serving to reduce the number
of independent constants in Eq. (2.34) to two. For this purpose, refer again to the element subjected to
pure shear (Fig. 1.3c). In accordance with Section 1.9, a pure shearing stress τxy can be expressed in
terms of the principal stresses acting on planes (in the x′ and y′ directions) making an angle of 45°
with the shear planes: σx′ = τxy and σy′ = –τxy. Then, applying Hooke’s law, we find that

(b)

On the other hand, because εx = εy = 0 for pure shear, Eq. (2.13a) yields, for θ = 45°, εx′ = γxy/2, or

(c)
Equating the alternative relations for εx′ in Eqs. (b) and (c), we find that

(2.35)

It is seen that, when any two of the constants ν, E, and G are determined experimentally, the third may
be found from Eq. (2.35). From Eq. (2.34) together with Eq. (2.35), we obtain the following stress–
strain relationships:

(2.36)

Here

(2.37)
and

(2.38)

The shear modulus G and the quantity λ are referred to as the Lamé constants. Following a procedure
similar to that used for axial stress in Section 2.9, it can be shown that Eq. (2.37) represents the unit
volume change or dilatation of an element in triaxial stress.
The bulk modulus of elasticity is another important constant. The physical significance of this quantity
is observed by considering, for example, the case of a cubic element subjected to hydrostatic pressure
p. Because the stress field is described by σx = σy = σz = –p and τxy = τyz = τxz = 0, Eq. (2.37) reduces
to e = –3(1 – 2ν)p/E. The foregoing may be written in the form

(2.39)

where K is the modulus of volumetric expansion or bulk modulus of elasticity. It is seen that the unit
volume contraction is proportional to the pressure and inversely proportional to K. Equation (2.39)
also indicates that for incompressible materials, for which e = 0, Poisson’s ratio is 1/2. For all
common materials, however, ν < 1/2, since they demonstrate some change in volume, e ≠ 0. Table D.1
lists average mechanical properties for a number of common materials. The relationships connecting
the elastic constants introduced in this section are given by Eqs. (P2.51) in Prob. 2.51.

Example 2.5. Volume Change of a Metal Block
Calculate the volumetric change of the metal block shown in Fig. 2.18 subjected to uniform
pressure p = 160 MPa acting on all faces. Use E = 210 GPa and ν = 0.3.

Figure 2.18. Example 2.5. A parallelpiped under pressure.

Solution

The bulk modulus of elasticity of the material, using Eq. (2.39), is

and the dilatation is

Since the initial volume of the block (Fig. 2.18) is Vo = 2 × 1.5 × 1 = 3 m3, Eq. (2.29) yields

∆V = eVo = (–9.14 × 10–4)(3 × 109) = –2.74 × 106 mm3

(2.34)

It is demonstrated next that the elastic constants E, v, and G are related, serving to reduce the number
of independent constants in Eq. (2.34) to two. For this purpose, refer again to the element subjected to
pure shear (Fig. 1.3c). In accordance with Section 1.9, a pure shearing stress τxy can be expressed in
terms of the principal stresses acting on planes (in the x′ and y′ directions) making an angle of 45°
with the shear planes: σx′ = τxy and σy′ = –τxy. Then, applying Hooke’s law, we find that

(b)

On the other hand, because εx = εy = 0 for pure shear, Eq. (2.13a) yields, for θ = 45°, εx′ = γxy/2, or

(c)
Equating the alternative relations for εx′ in Eqs. (b) and (c), we find that

(2.35)

It is seen that, when any two of the constants ν, E, and G are determined experimentally, the third may
be found from Eq. (2.35). From Eq. (2.34) together with Eq. (2.35), we obtain the following stress–
strain relationships:

(2.36)
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The shear modulus G and the quantity λ are referred to as the Lamé constants. Following a procedure
similar to that used for axial stress in Section 2.9, it can be shown that Eq. (2.37) represents the unit
volume change or dilatation of an element in triaxial stress.
The bulk modulus of elasticity is another important constant. The physical significance of this quantity
is observed by considering, for example, the case of a cubic element subjected to hydrostatic pressure
p. Because the stress field is described by σx = σy = σz = –p and τxy = τyz = τxz = 0, Eq. (2.37) reduces
to e = –3(1 – 2ν)p/E. The foregoing may be written in the form

(2.39)

where K is the modulus of volumetric expansion or bulk modulus of elasticity. It is seen that the unit
volume contraction is proportional to the pressure and inversely proportional to K. Equation (2.39)
also indicates that for incompressible materials, for which e = 0, Poisson’s ratio is 1/2. For all
common materials, however, ν < 1/2, since they demonstrate some change in volume, e ≠ 0. Table D.1
lists average mechanical properties for a number of common materials. The relationships connecting
the elastic constants introduced in this section are given by Eqs. (P2.51) in Prob. 2.51.
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The bulk modulus of elasticity of the material, using Eq. (2.39), is

and the dilatation is

Since the initial volume of the block (Fig. 2.18) is Vo = 2 × 1.5 × 1 = 3 m3, Eq. (2.29) yields
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Inc.) and (b) schematic representation of a strain rosette.

The ratio of the unit change in the resistance of the gage to the unit change in length (strain) of the gage
is called the gage factor. The metal of which the filament element is made is the principal factor
determining the magnitude of this factor. Constantan, an alloy composed of 60% copper and 40%
nickel, produces wire or foil gages with a gage factor of approximately 2.
The operation of the bonded strain gage is based on the change in electrical resistance of the filament
that accompanies a change in the strain. Deformation of the surface on which the gage is bonded
results in a deformation of the backing and the grid as well. Thus, with straining, a variation in the
resistance of the grid will manifest itself as a change in the voltage across the grid. An electrical
bridge circuit, attached to the gage by means of lead wires, is then used to translate electrical changes
into strains. The Wheatstone bridge, one of the most accurate and convenient systems of this type
employed, is capable of measuring strains as small as 1 µ.

Strain Rosette
Special combination gages are available for the measurement of the state of strain at a point on a
surface simultaneously in three or more directions. It is usual to cluster together three gages to form a
strain rosette, which may be cemented on the surface of a member. Generally, these consist of three
gages whose axes are either 45° or 60° apart. Consider three strain gages located at angles θa, θb, and
θc with respect to reference axis x (Fig. 2.20b). The a-, b-, and c-directed normal strains are, from
Eq. (2.13a),

(2.44)
When the values of εa, εb, and εc are measured for given gage orientations θa, θb, and θc the values
of εx, εy, and γxy can be obtained by simultaneous solution of Eqs. (2.44). The arrangement of gages
employed for this kind of measurement is called a strain rosette.
Once strain components are known, we can apply Eq. (3.11b) of Section 3.4 to determine the out-of-
plane principal strain εz. The in-plane principal strains and their orientations may be obtained
readily using Eqs. (2.15) and (2.16), as illustrated next, or Mohr’s circle for strain.

Example 2.6. Principal Strains on Surface of a Steel Frame
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where ∂u/∂x = εx. Note that dW is the work done on dx dy dz, and dU is the corresponding increase in
strain energy. Designating the strain energy per unit volume (strain energy density) as Uo, for a
linearly elastic material we have

(a)

After integration, Eq. (a) yields

(2.48)
This quantity represents the shaded area in Fig. 2.21b. The area above the stress–strain curve, termed
the complementary energy density, may be determined from

(2.49)

For a linearly elastic material,  but for a nonlinearly elastic material, Uo and  will differ, as
seen in the figure. The unit of strain energy density in SI units is the joules per cubic meter (J/m3), or
pascals; in U.S. Customary Units, it is expressed in inch-pounds per cubic inch (in. · lb/in.3), or
pounds per square inch (psi).
When the material is stressed to the proportional limit, the strain energy density is referred to as the
modulus of resilience. It is equal to the area under the straight-line portion of the stress–strain
diagram (Fig. 2.10a) and represents a measure of the material’s ability to store or absorb energy
without permanent deformation. Similarly, the area under an entire stress–strain diagram provides a
measure of a material’s ability to absorb energy up to the point of fracture; it is called the modulus of
toughness. The greater the total area under a stress–strain diagram, the tougher the material.
In the case in which σx, σy, and σz act simultaneously, the total work done by these normal stresses is
simply the sum of expressions similar to Eq. (2.48) for each direction. This is because an x-directed
stress does no work in the y or z directions. The total strain energy per volume is thus

(b)
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(b)

The elastic strain energy associated with shear deformation is now analyzed by considering an
element of thickness dz subject only to shearing stresses τxy (Fig. 2.22). From the figure, we note that
shearing force τxy dxdz causes a displacement of γxy dy. The strain energy due to shear is 

, where the factor  arises because the stress varies linearly with strain from zero to its
final value, as before. The strain energy density is therefore

Figure 2.22. Deformation due to pure shear.

(2.50)
Because the work done by τxy accompanying perpendicular strains γyz and γxz is zero, the total strain
energy density attributable to shear alone is found by superposition of three terms identical in form
with Eq. (2.50):

(c)

Strain Energy Density for Three-Dimensional Stresses
Given a general state of stress, the strain energy density is found by adding Eqs. (b) and (c):

(2.51)
Introducing Hooke’s law into Eq. (2.51) leads to the following form involving only stresses and
elastic constants:

(2.52)

An alternative form of Eq. (2.51), written in terms of strains, is

(2.53)

The quantities λ and e are defined by Eqs. (2.38) and (2.37), respectively.
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demonstrated in Example 2.7. Some special cases of Eq. (2.57) follow.

Strain Energy for Axially Loaded Bars
The normal stress at any given transverse section through a nonprismatic bar subjected to an axial
force P is σx = P/A, where A represents the cross-sectional area (Fig. 2.23). Substituting this and Eq.
(2.48) into Eq. (2.57) and setting dV = A dx, we have

(2.58)

Figure 2.23. Nonprismatic bar with varying axial loading.

When a prismatic bar is subjected at its ends to equal and opposite forces of magnitude P, the
foregoing becomes

(2.59)

where L is the length of the bar.

Example 2.7. Strain Energy in a Bar under Combined Loading

A prismatic bar suspended from one end carries, in addition to its own weight, an axial load Po
(Fig. 2.24). Determine the strain energy U stored in the bar.

Figure 2.24. Example 2.7. A prismatic bar loaded by its weight and load Po.

Solution



if bar is prismatic,

�

Strain energy due to torsion for a circular shaft:

�
if the shaft is prismatic, 

�
Strain energy for beams in bending

�
Dilatational stress tensor

�

Here, �
Dilatational strain energy density:

�

Here, �
Distortional stress tensor (deviator):

�
Distortional strain energy:

�
Strain energy 

�

Saint-Venant’s Principle
If actual distribution of forces is replaced by a statically equivalent system, the distribution of stress 
and strain throughout the body is altered only near the regions of load application.
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Example 2.7. Strain Energy in a Bar under Combined Loading

A prismatic bar suspended from one end carries, in addition to its own weight, an axial load Po
(Fig. 2.24). Determine the strain energy U stored in the bar.

Figure 2.24. Example 2.7. A prismatic bar loaded by its weight and load Po.

Solution

The axial force P acting on the shaded element indicated is expressed

(a)
where γ is the specific weight of the material and A, the cross-sectional area of the bar. Inserting
Eq. (a) into Eq. (2.58), we have

(2.60)

The first and the third terms on the right side represent the strain energy of the bar subjected to its
own weight and the strain energy of a bar supporting only axial force Po respectively. The
presence of the middle term indicates that the strain energy produced by the two loads acting
simultaneously is not simply equal to the sum of the strain energies associated with the loads
acting separately.

Strain Energy of Circular Bars in Torsion
Consider a circular bar of varying cross section and varying torque along its axis (Fig. 2.23, with
double-headed torque vector T replacing force vector P). The state of stress is pure shear. The
torsion formula (Table 1.1) for an arbitrary distance ρ from the centroid of the cross section results in
τ = Tρ/J. The strain energy density, Eq. (2.50), becomes then Uo = T2ρ2/2J2G. When this is introduced
into Eq. (2.57), we obtain

(b)
where dV = dA dx; dA represents the cross-sectional area of an element. By definition, the term in
parentheses is the polar moment of inertia J of the cross-sectional area. The strain energy is therefore

(2.61)

In the case of a prismatic shaft subjected at its ends to equal and opposite torques T, Eq. (2.61)
yields

(2.62)

where L is the length of the bar.

Strain Energy for Beams in Bending

The axial force P acting on the shaded element indicated is expressed

(a)
where γ is the specific weight of the material and A, the cross-sectional area of the bar. Inserting
Eq. (a) into Eq. (2.58), we have

(2.60)
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presence of the middle term indicates that the strain energy produced by the two loads acting
simultaneously is not simply equal to the sum of the strain energies associated with the loads
acting separately.
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where dV = dA dx; dA represents the cross-sectional area of an element. By definition, the term in
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In the case of a prismatic shaft subjected at its ends to equal and opposite torques T, Eq. (2.61)
yields

(2.62)

where L is the length of the bar.

Strain Energy for Beams in Bending

For the case of a beam in pure bending, the flexure formula gives us the axial normal stress σx =
–My/I (see Table 1.1). From Eq. (2.48), the strain energy density is Uo = M2y2/2EI2. Upon
substituting this into Eq. (2.57) and noting that M2/2EI2 is a function of x alone, we have

(c)
Here, as before, dV = dA dx, and dA represents an element of the cross-sectional area. Recalling that
the integral in parentheses defines the moment of inertia I of the cross-sectional area about the neutral
axis, the strain energy is expressed as

(2.63)

where integration along beam length L gives the required quantity.

2.15 Components of Strain Energy
A new perspective on strain energy may be gained by viewing the general state of stress (Fig. 2.25a)
in terms of the superposition shown in Fig. 2.25. The state of stress in Fig. 2.25b, represented by

(a)

Figure 2.25. Resolution of (a) state of stress into (b) dilatational stresses and (c) distortional
stresses.

results in volume change without distortion and is termed the dilatational stress tensor. Here 
 is the mean stress defined by Eq. (1.44). Associated with σm is the mean strain, 
. The sum of the normal strains accompanying the application of the dilatational

stress tensor is the dilatation e = εx + εy + εz, representing a change in volume only. Thus, the
dilatational strain energy absorbed per unit volume is given by
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results in volume change without distortion and is termed the dilatational stress tensor. Here 
 is the mean stress defined by Eq. (1.44). Associated with σm is the mean strain, 
. The sum of the normal strains accompanying the application of the dilatational

stress tensor is the dilatation e = εx + εy + εz, representing a change in volume only. Thus, the
dilatational strain energy absorbed per unit volume is given by

(2.64)

where K is defined by Eq. (2.39).
The state of stress in Fig. 2.25c, represented by

(b)

is called the deviator or distortional stress tensor. This produces deviator strains or distortion
without change in volume because the sum of the normal strains is (εx – εm) + (εy – εm) + (εz – εm) = 0.
The distortional energy per unit volume, Uod, associated with the deviator stress tensor is attributable
to the change of shape of the unit volume, while the volume remains constant. Since Uov and Uod are
the only components of the strain energy, we have Uo = Uov + Uod. By subtracting Eq. (2.64) from Eq.
(2.52), the distortional energy is readily found to be

(2.65)

This is the elastic strain energy absorbed by the unit volume as a result of its change in shape
(distortion). In the preceding, the octahedral shearing stress τoct is given by

(2.66)
The planes where the τoct acts are shown in Fig. 1.24 of Section 1.14. The strain energy of distortion
plays an important role in the theory of failure of a ductile metal under any condition of stress. This is
discussed further in Chapter 4. The stresses and strains associated with both components of the strain
energy are also very useful in describing the plastic deformation (Chap. 12).

Example 2.8. Strain Energy Components in a Tensile Bar

A mild steel bar of uniform cross section A is subjected to an axial tensile load P. Derive an
expression for the strain energy density, its components, and the total strain energy stored in the
bar. Let ν = 0.25.

Solution

The state of stress at any point in the bar is axial tension, τxy = τxz = τyz = σy = σz = 0, σx = σ = P/A
(Fig. 2.25a). We therefore have the stresses associated with volume change σm = σ/3 and shape
change σx – σm = 2σ/3, σy – σm = σz – σm = –σ/3 (Fig. 2.25b, c). The strain energy densities for the
state of stress in cases a, b, and c are found, respectively, as follows:

(2.64)

where K is defined by Eq. (2.39).
The state of stress in Fig. 2.25c, represented by

(b)
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This is the elastic strain energy absorbed by the unit volume as a result of its change in shape
(distortion). In the preceding, the octahedral shearing stress τoct is given by
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Problems
Sections 2.1 through 2.8

2.1. Determine whether the following strain fields are possible in a continuous material:

a. ,

b. 
Here c is a small constant, and it is assumed that εz = γxz = γyz = 0.

2.2. Rectangle ABCD is scribed on the surface of a member prior to loading (Fig. P2.2).
Following the application of the load, the displacement field is expressed by

Figure P2.2.

where c = 10–4. Subsequent to the loading, determine (a) the length of the sides AB and AD;
(b) the change in the angle between sides AB and AD; and (c) the coordinates of point A.

2.3. A displacement field in a body is given by

shearing strain between edges AC and BC.
Figure P2.8.

2.9. A 100-mm by 150-mm rectangular plate QABC is deformed into the shape shown by the
dashed lines in Fig. P2.9. All dimensions shown in the figure are in millimeters. Determine at
point Q (a) the strain components εx, εy, γxy, and (b) the principal strains and the direction of
the principal axes.

Figure P2.9.

2.10. Calculate the principal strains and their orientations at point A of the deformed rectangular
plate shown in Fig. 2.5 of Example 2.1.

2.11. As a result of loading, the rectangle shown in Fig. P2.11 deforms into a parallelogram in
which sides QA and BC shorten 0.003 mm and rotate 500 µ radian counterclockwise while
sides AB and QC elongate 0.004 mm and rotate 1000 µ radian clockwise. Determine the
principal strains and the direction of the principal axes at point Q. Take a = 20 mm and b =
12mm.

Figure P2.11.

2.12. A thin rectangular plate a = 20 mm × b = 12 mm (Fig. P2.11) is acted upon by a stress
distribution resulting in the uniform strains εx = 300 µ, εy = 500 µ, and γxy = 200 µ. Determine
the changes in length of diagonals QB and AC.

2.13. Redo Prob. 2.12 using the following information: a = 30 mm, b = 15 mm, εx = 400 µ, εy =
200 µ, and γxy = –300 µ.

2.14. A thin plate is subjected to uniform shear stress τo = 70 MPa (Fig. P1.42 of Chap. 1). Let E =
200 GPa, ν = 0.3, AB = 40 mm, and BC = 60 mm. Determine (a) the change in length AB, (b)
the changes in length of diagonals AC and BD, and (c) the principal strains and their directions
at point A.

2.15. The principal strains at a point are ε1 = 400 µ and ε2 = 200 µ. Determine (a) the maximum
shear strain and the direction along which it occurs and (b) the strains in the directions at θ =
30° from the principal axes. Solve the problem by using the formulas developed and check the
results by employing Mohr’s circle.

2.16. A 3-m by 2-m rectangular thin plate is deformed by the movement of point B to B′ as shown
by the dashed lines in Fig. P2.16. Assuming a displacement field of the form u = c1xy and v =
c2xy, wherein c1 and c2 are constants, determine (a) expressions for displacements u and v;
(b) strain components εx, εy, and γxy at point B; and (c) the normal strain εx′ in the direction of
line QB. Verify that the strain field is possible.

Figure P2.16.

2.17. If the strains at a point are εx = –900 µ, εy = –300 µ, and γxy = 900 µ, what are the principal
strains, and in what direction do they occur? Use Mohr’s circle of strain.

2.18. Solve Prob. 2.17 for εx = 300 µ, εy = 900 µ, and γxy = –900 µ.

2.19. A 3-m by 1-m by 2-m parallelepiped is deformed by movement of corner A to A′ (2.9995,
1.0003, 1.9994), as shown in Fig. P2.19. Assuming that the displacement field is given by
Eqs. (2.22), calculate at point A (a) the strain components and ascertain whether this strain
distribution is possible; (b) the normal strain in the direction of line AB; and (c) the shearing
strain for the perpendicular lines AB and AC.

Figure P2.19.

2.20. Redo Prob. 2.19 for the case in which corner point A is moved to A′ (3.0006, 0.9997,
1.9996).

2.21. At a point in a stressed body, the strains, related to the coordinate set xyz, are given by
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200 GPa, ν = 0.3, AB = 40 mm, and BC = 60 mm. Determine (a) the change in length AB, (b)
the changes in length of diagonals AC and BD, and (c) the principal strains and their directions
at point A.
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Determine (a) the strain invariants; (b) the normal strain in the x′ direction, which is directed
at an angle θ = 30° from the x axis; (c) the principal strains ε1, ε2, and ε3; and (d) the maximum
shear strain.

2.22. Solve Prob. 2.21 for a state of strain given by

2.23. The following describes the state of strain at a point in a structural member:

Determine the magnitudes and directions of the principal strains.
2.24. A tensile test is performed on a 12-mm-diameter aluminum alloy specimen (ν = 0.33) using a

50-mm gage length. When an axial tensile load reaches a value of 16 kN, the gage length has
increased by 0.10 mm. Determine (a) the modulus of elasticity; (b) the decrease ∆d in
diameter and the dilatation e of the bar.

2.25. A 12-mm-diameter specimen is subjected to tensile loading. The increase in length resulting
from a load of 9 kN is 0.025 mm for an original length Lo of 75 mm. What are the true and
conventional strains and stresses? Calculate the modulus of elasticity.

Sections 2.9 through 2.12
2.26. Find the smallest diameter and shortest length that may be selected for a steel control rod of a

machine under an axial load of 5 kN if the rod must stretch 2 mm. Use E = 210 GPa and σall =
160 MPa.

2.27. A 40-mm diameter bar ABC is composed of an aluminum part AB and a steel part BC (Fig.
P2.27). After axial force P is applied, a strain gage attached to the steel measures normal
strain at the longitudinal direction as εs = 600 µ. Determine (a) the magnitude of the applied
force P; (b) the total elongation of the bar if each material behaves elastically. Take Ea = 70
GPa and Es = 210 GPa.

Figure P2.27.

2.28. A 5-m-long truss member is made of two 40-mm-diameter steel bars. For a tensile load of
600 kN, find (a) the change in the length of the member; (b) the change in the diameter of the
member. Use E = 200 GPa, σyp = 250 MPa, and ν = 0.3.

2.29. The cast-iron pipe of length L, outer diameter D, and thickness t is subjected to an axial
compressive P. Calculate (a) the change in length ∆L; (b) the change in outer diameter D; (c)
the change in thickness ∆t. Given: D = 100 mm, t = 10 mm, L = 0.4 m, P = 150 kN, E = 70
GPa, and ν = 0.3.

2.30. A typical vibration isolation device consists of rubber cylinder of diameter d compressed
inside of a steel cylinder by a force Q applied to a steel rod, as schematically depicted in Fig.
P2.30. Find, in terms of d, Q, and Poisson’s ratio ν for the rubber, as needed: (a) an
expression for the lateral pressure p between the rubber and the steel cylinder; (b) the lateral
pressure p between the rubber and the steel cylinder for d = 50 mm, ν = 0.3, and Q = 5 kN.
Assumptions: 1. Friction between the rubber and steel can be neglected; 2. Steel cylinder and
rod are rigid.

Figure P2.30.

2.31. A solid sphere of diameter d experiences a uniform pressure of p. Determine (a) the decrease
in circumference of the sphere; (b) the decrease in volume of the sphere ∆V. Given: d = 250
mm, p = 160 MPa, E = 70 GPa, and ν = 0.3. Note: Volume of a sphere is , where r =
d/2.

2.32. The state of strain at a point in a thin steel plate is εx = 500 µ, εy = –100 µ, and γxy = 150 µ.
Determine (a) the in-plane principal strains and the maximum in-plane shear strain; (b) true
maximum shearing strain ν = 0.3. Sketch the results found in part (a) on properly oriented
deformed elements.

2.28. A 5-m-long truss member is made of two 40-mm-diameter steel bars. For a tensile load of
600 kN, find (a) the change in the length of the member; (b) the change in the diameter of the
member. Use E = 200 GPa, σyp = 250 MPa, and ν = 0.3.

2.29. The cast-iron pipe of length L, outer diameter D, and thickness t is subjected to an axial
compressive P. Calculate (a) the change in length ∆L; (b) the change in outer diameter D; (c)
the change in thickness ∆t. Given: D = 100 mm, t = 10 mm, L = 0.4 m, P = 150 kN, E = 70
GPa, and ν = 0.3.

2.30. A typical vibration isolation device consists of rubber cylinder of diameter d compressed
inside of a steel cylinder by a force Q applied to a steel rod, as schematically depicted in Fig.
P2.30. Find, in terms of d, Q, and Poisson’s ratio ν for the rubber, as needed: (a) an
expression for the lateral pressure p between the rubber and the steel cylinder; (b) the lateral
pressure p between the rubber and the steel cylinder for d = 50 mm, ν = 0.3, and Q = 5 kN.
Assumptions: 1. Friction between the rubber and steel can be neglected; 2. Steel cylinder and
rod are rigid.

Figure P2.30.

2.31. A solid sphere of diameter d experiences a uniform pressure of p. Determine (a) the decrease
in circumference of the sphere; (b) the decrease in volume of the sphere ∆V. Given: d = 250
mm, p = 160 MPa, E = 70 GPa, and ν = 0.3. Note: Volume of a sphere is , where r =
d/2.

2.32. The state of strain at a point in a thin steel plate is εx = 500 µ, εy = –100 µ, and γxy = 150 µ.
Determine (a) the in-plane principal strains and the maximum in-plane shear strain; (b) true
maximum shearing strain ν = 0.3. Sketch the results found in part (a) on properly oriented
deformed elements.

2.33. An element at a point on a loaded frame has strains as follows: εx = 480 µ, εy = 800 µ and γxy
= –1120 µ. Determine (a) the principal strains; (b) the maximum shear strain; (c) the true
maximum shearing strain.

2.34. A metallic plate of width w and thickness t is subjected to a uniform axial force P as shown
in Fig. P2.34. Two strain gages placed at point A measure the strains εx′ and at 30° and 60°,
respectively, to the axis of the plate. Calculate (a) the normal strains εx and εy; (b) the normal
strains εx′ and εy′; (c) the shearing strain γx′y′. Given: w = 60 mm, t = 6 mm, E = 200 GPa, ν =
0.3, and P = 25 kN.

Figure P2.34.

2.35. During the static test of a panel, a 45° rosette reads the following normal strains on the free
surface (Fig. P2.35): εa = –800 µ, εb = –1000 µ, and εc = 400 µ. Find the principal strains and
show the results on a properly oriented deformed element.

Figure P2.35.

Figure P2.36.

2.36. A 50-mm-square plate is subjected to the stresses shown in Fig. P2.36. What deformation is
experienced by diagonal BD? Express the solution, in terms of E, for ν = 0.3 using two
approaches: (a) determine the components of strain along the x and y directions and then
employ the equations governing the transformation of strain; (b) determine the stress on planes
perpendicular and parallel to BD and then employ the generalized Hooke’s law.

2.37. A uniform pressure p acts over the entire straight edge of a large plate (Fig. P2.37). What are
normal stress components σx and σz acting on a volumetric element at some distance from the
loading in terms of Poisson’s ratio ν and p, as required? Assume that εx = εz = 0 and σy = –p
everywhere.

Figure P2.37.

2.38. A 45° rosette is used to measure strain at a critical point on the surface of a loaded beam.
The readings are εa = –100 µ, εb = 50 µ, εc = 100 µ for θa = 0°, θb = 45°, and θc = 90° (Fig.
2.20b). Calculate the principal strains and stresses and their directions. Use E = 200 GPa and
ν = 0.3.

2.39. The following state of strain has been measured at a point on the surface of a crane hook: εa
= 1000 µ, εb = –250 µ, and εc = 200 µ for θa = –15°, θb = 30°, and θc = 75° (Fig. 2.20b).
Determine strain components εx, εy, and γxy.

2.40. The strains measured at a point on the surface of a machine element are εa = 400 µ, εb = 300
µ, and εc = –50 µ for θa= 30°, θb = –30°, and θc = 90° (Fig. 2.20b). Calculate (a) the in-plane
maximum shearing strain, and (b) the true maximum shearing strain. Use .

2.41. For a given steel, E = 200 GPa and G = 80 GPa. If the state of strain at a point within this
material is given by

ascertain the corresponding components of the stress tensor.
2.42. For a material with G = 80 GPa and E = 200 GPa, determine the strain tensor for a state of

stress given by

2.43. The distribution of stress in an aluminum machine component is given (in megapascals) by

Calculate the state of strain of a point positioned at (1, 2, 4). Use E = 70 GPa and ν = 0.3.
2.44. The distribution of stress in a structural member is given (in megapascals) by Eqs. (d) of

Example 1.2 of Chapter 1. Calculate the strains at the specified point  for E = 200 GPa
and ν = 0.25.
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material is given by

ascertain the corresponding components of the stress tensor.
2.42. For a material with G = 80 GPa and E = 200 GPa, determine the strain tensor for a state of

stress given by

2.43. The distribution of stress in an aluminum machine component is given (in megapascals) by

Calculate the state of strain of a point positioned at (1, 2, 4). Use E = 70 GPa and ν = 0.3.
2.44. The distribution of stress in a structural member is given (in megapascals) by Eqs. (d) of

Example 1.2 of Chapter 1. Calculate the strains at the specified point  for E = 200 GPa
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2.50. The stress field in an elastic body is given by

where c is a constant. Derive expressions for the displacement components u(x, y) and v(x, y)
in the body.

2.51. Derive the following relations involving the elastic constants:

(P2.51)

2.52. As shown in Fig. P2.52, a thin prismatical bar of specific weight γ and constant cross section
hangs in the vertical plane. Under the effect of its own weight, the displacement field is
described by

Figure P2.52.

The z displacement and stresses may be neglected. Find the strain and stress components in
the bar. Check to see whether the boundary conditions [Eq. (1.48)] are satisfied by the
stresses found.

2.53. A uniform bar of rectangular cross section 2h × b and specific weight γ hangs in the vertical
plane (Fig. P2.53). Its weight results in displacements

Demonstrate whether this solution satisfies the 15 equations of elasticity and the boundary

conditions.
Figure P2.53.

Sections 2.13 through 2.16
2.54. A bar of uniform cross-sectional area A, modulus of elasticity E, and length L is fixed at its

right end and subjected to axial forces P1 and P2 at its free end. Verify that the total strain
energy stored in the bar is given by

(P2.54)
Note that U is not the sum of the strain energies due to P1 and P2 acting separately. Find the
components of the energy for P1 = P2 = P and ν = 0.25.

2.55. Three bars of successively larger volume are to support the same load P (Fig. P2.55). Note
that the first bar has a uniform cross-sectional area A over its length L. Neglecting stress
concentrations, compare the strain energy stored in the three bars.

Figure P2.55.

2.56. A solid bronze sphere (E = 110 GPa, , r = 150 mm) is subjected to hydrostatic pressure
p so that its volume is reduced by 0.5%. Determine (a) the pressure p, and (b) the strain
energy U stored in the sphere. (Note: volume of a sphere .)

2.57. Calculate the total strain energy U stored in the block described in Prob. 2.46.
2.58. A round bar is composed of three segments of the same material (Fig. P2.58). The diameter

is d for the lengths BC and DE and nd for length CD, where n is the ratio of the two diameters.
Neglecting the stress concentrations, verify that the strain energy of the bar when subjected to
axial load P is

conditions.
Figure P2.53.
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The example problems in the book should also be added this list of problems.

(P2.58)

Figure P2.58.

where A = πd2/4. Compare the result for n = 1 with those for  and n = 2.
2.59. (a) Taking into account only the effect of normal stress, determine the strain energy of

prismatic beam AB due to the axial force P and moment Mo acting simultaneously (Fig.
P2.59). (b) Evaluate the strain energy for the case in which the beam is rectangular, 100-mm
deep by 75-mm wide, P = 8 kN, Mo = 2 kN · m, L = 1.2 m, a = 0.3 m, b = 0.9 m, and E = 70
GPa.

Figure P2.59.

2.60. A stepped shaft is subjected to pure torsion, as shown in Fig. P2.60. Neglecting the stress
concentrations, develop the following equation for energy stored in the shaft:

(P2.60)

Figure P2.60.

Here φ is the angle of twist and G represents the modulus of rigidity.
2.61. (a) Determine the strain energy of a solid brass circular shaft ABC loaded as shown in Fig.

P2.61, assuming that the stress concentrations may be omitted. (b) Calculate the strain energy
for T = 1.4 kN · m, a = 500 mm, d = 20 mm, and G = 42 GPa.

Figure P2.61.

(P2.58)

Figure P2.58.
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prismatic beam AB due to the axial force P and moment Mo acting simultaneously (Fig.
P2.59). (b) Evaluate the strain energy for the case in which the beam is rectangular, 100-mm
deep by 75-mm wide, P = 8 kN, Mo = 2 kN · m, L = 1.2 m, a = 0.3 m, b = 0.9 m, and E = 70
GPa.

Figure P2.59.

2.60. A stepped shaft is subjected to pure torsion, as shown in Fig. P2.60. Neglecting the stress
concentrations, develop the following equation for energy stored in the shaft:

(P2.60)

Figure P2.60.

Here φ is the angle of twist and G represents the modulus of rigidity.
2.61. (a) Determine the strain energy of a solid brass circular shaft ABC loaded as shown in Fig.

P2.61, assuming that the stress concentrations may be omitted. (b) Calculate the strain energy
for T = 1.4 kN · m, a = 500 mm, d = 20 mm, and G = 42 GPa.

Figure P2.61.

2.62. Consider a simply supported rectangular beam of depth h, width b, and length L subjected to
a uniform load of intensity p. Verify that the maximum strain energy density equals

(P2.62)

in which U is the strain energy of the beam and V its volume.
2.63. Consider a beam with simple supports at B and C and an overhang AB (Fig. P2.63). What is

the strain energy in the beam due to the load P?
Figure P2.63.

2.64. A simply supported beam carries a concentrated force P and a moment Mo as shown in Fig.
P2.64. How much strain energy is stored in the beam owing to the loads acting
simultaneously?

Figure P2.64.

2.65. Consider the state of stress given in Fig. 1.20b. Determine how many times more energy is
absorbed in changing the shape than in changing the volume of a unit element. Let E = 200
GPa and ν = 0.3.

2.66. The state of stress at a point is

Decompose this array into a set of dilatational stresses and a set of deviator stresses.
Determine the values of principal deviator stress.

2.67. Calculate the strain energy per unit volume in changing the volume and in changing the shape
of the material at any point on the surface of a steel shaft 120 mm in diameter subjected to
torques of 20 kN · m and moments of 15 kN · m at its ends. Use E = 200 GPa and ν = 0.25.

2.68. The state of stress at a point in a loaded member is represented in Fig. P2.68. Express the
dilatational energy density and the distortional energy density in terms of the given stresses (σ,
τ) at the point and the material properties (E, ν).
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