Preparation for the mid-term exam.

The positive directions of stresses..
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Variation of stress within a body:
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Differential equations of equilibrium for three dimensional stresses:
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Plane stress transformation:
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Principal stresses for two dimensional problems:
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Maximum shearing stress:
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Mohr’s circle for 2D case:
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Sign convention for shearing stresses in Mohr’s circle
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Three dimensional stress transformation
Stress components on a tetrahedron:

Areas of tetrahedron faces based on the area of ABC, indicated by A:
Agan = AL, Agsc = Am,  Agpe = An

Direction cosines:



cosa = cos(n, x) =1

* cos B =cos(n,y) =m

2 . 2
cosy=cos{mz)=n [+m+n =1

p is the stress resultant on the cut surface. px, py and pz are the cartesian components of p. Using
force equilibrium in X, y and z directions the following relations are obtained:

pe=ad + 1,.m+ 10
py =Tl +oum+ 1,0
Oy = Tl +o0m o
Original coordinates: x, y, z . The rotated coordinates: X W,z

The x'y'z'and xyz systems are related by the direction cosines
Notation for direction cosines:
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The normal stress in x direction after transformation:
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Direction cosines for stress transformation :
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Stress transformation:
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Principal stresses in 3D
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Stress invariants ( Coordinate transformation does not change their values)
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Octahedral plane:

Octahedral plane
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The normals of all faces make the same angle with x, y and z axes.
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Octahedral normal stress:
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Mohr’s circle for 3D
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The shaded area in the figure represents the admissible state of stress.

Problems:

1.31. A thin skewed plate is subjected to a uniform distribution of stress along its sides, as shown
in Fig. P1.31. Calculate (a) the stresses o, 6,, ¢

J» Oxy» and (b) the principal stresses and their
orientations.

Figure P1.31.
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1.34. A thin-walled cylindrical tank of radius 7 is subjected simultaneously to internal pressure p

and a compressive force P through rigid end plates. Determine the magnitude of force P to
produce pure shear in the cylindrical wall.

Draw an element under pure shear a) Applying shear stresses b) Applying biaxial stress
Draw the Mohr’s circle for pure shear stress.



1.35. A thin-walled cylindrical pressure vessel of radius 120 mm and a wall thickness of 5 mm is
subjected to an internal pressure of p =4 MPa. In addition, an axial compression load of P =
30z kN and a torque of 7= 10z kN - m are applied to the vessel through the rigid end plates
(Fig. P1.35). Determine the maximum shearing stresses and associated normal stresses in the
cylindrical wall. Show the results on a properly oriented element.

Figure P1.35.
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1.37. A shaft of diameter d carries an axial compressive load P and two torques 77, 7, (Fig.
P1.37). Determine the maximum shear stress at a point 4 on the surface of the shaft. Given: d
=100 mm, P=400 kN, 7; =10kN - m,and 7, =2 kN - m.

Figure P1.37.

1.40. A cantilever beam of thickness ¢ is subjected to a constant traction 7, (force per unit area) at
its upper surface, as shown in Fig. P1.40. Determine, in terms of 7, /, and L, the principal
stresses and the maximum shearing stress at the corner points 4 and B.

Figure P1.40.

1.47. The shearing stress at a point in a loaded structure is z,,, = 40 MPa. Also, it is known that the
principal stresses at this point are o; =40 MPa and 0, = —60 MPa. Determine o,
(compression) and o, and indicate the principal and maximum shearing stresses on an
appropriate sketch.



1.53. A thin-walled cylindrical tank is subjected to an internal pressure p and uniform axial tensile
load P (Fig. P1.53). The radius and thickness of the tank are » = 0.45 mand # =5 mm. The
normal stresses at a point 4 on the surface of the tank are restricted to o,-= 84 MPa and o, =

56 MPa, while shearing stress 7., is not specified. Determine the values of p and P. Use 6 =
30°.
Figure P1.53.
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1.59. The state of stress at a point in an x, y, z coordinate system is

20 12 —15
12 0 10| MPa
-15 10 6

Determine the stresses and stress invariants relative to the x', y’, z' coordinate system defined
by rotating x, y through an angle of 30° counterclockwise about the z axis.
1.65. At a point in a loaded structure, the stresses relative to an x, y, z coordinate system are given
by
30 0 20

0 0 0]|MPa
20 0 0

Determine by expanding the characteristic stress determinant: (a) the principal stresses; (b)
the direction cosines of the maximum principal stress.

1.66. The stresses (in megapascals) with respect to an x, y, z coordinate system are described by

o= x + ¥, o, =—x+6y+z

Ty Tyy = Tpe = Ty = 1)

Atpoint (3, 1, 5), determine (a) the stress components with respect to x', y', z"if
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and (b) the stress components with respect to x”, y", z"if it = 2/V5 my = =15 ‘and ny =1,

Show that the quantities given by Eq. (1.34) are invariant under the transformations (a) and

(b).

1.74. At a point in a loaded body, the stresses relative to an x, y, z coordinate system are

40 40 30
40 20 0 |MPa
0 0 20

Determine the normal stress ¢ and the shearing stress 7 on a plane whose outward normal is
oriented at angles of 40°, 75°, and 54° with the x, y, and z axes, respectively.



1.77. The state of stress at a point in a member relative to an x, y, z coordinate system is given by

=100 0 —80
0 20 0| MPa
=80 0 20

Calculate (a) the principal stresses by expansion of the characteristic stress determinant; (b)
the octahedral stresses and the maximum shearing stress.

The example problems in the book should also be added this list of problems.
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Strain transformation in 2D
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Principal strains
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Hooke’s law
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Stress-Strain relations
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Here, p is hydrostatic pressure.

Strain rosette

\ /b
e

Strain energy density (strain energy for unit volume) for uniaxial case:
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Strain energy density for pure shear:
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Strain energy for an axially loaded bar:
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if bar is prismatic,
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Strain energy due to torsion for a circular shaft:
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Strain energy for beams in bending
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Dilatational strain energy density:
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Distortional stress tensor (deviator):
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Saint-Venant’s Principle
If actual distribution of forces is replaced by a statically equivalent system, the distribution of stress
and strain throughout the body is altered only near the regions of load application.



Problems

2.2. Rectangle ABCD is scribed on the surface of a member prior to loading (Fig. P2.2)
Following the application of the load, the displacement field is expressed by

u=c(2x + ), v = ¢(x* — 3y%)

Figure P2.2.
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where ¢ = 10~*. Subsequent to the loading, determine (a) the length of the sides AB and 4D;
(b) the change in the angle between sides AB and AD; and (c) the coordinates of point 4.

2.9. A 100-mm by 150-mm rectangular plate QABC is deformed into the shape shown by the

dashed lines in Fig. P2.9. All dimensions shown in the figure are in millimeters. Determine at

point O (a) the strain components ¢,, €, J,,, and (b) the principal strains and the direction of
the principal axes.

Figure P2.9.
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2.15. The principal strains at a point are ¢; =400 x and ¢, = 200 x. Determine (a) the maximum

shear strain and the direction along which it occurs and (b) the strains in the directions at § =
30° from the principal axes. Solve the problem by using the formulas developed and check the
results by employing Mohr’s circle.

2.16. A 3-m by 2-m rectangular thin plate is deformed by the movement of point B to B’ as shown
by the dashed lines in Fig. P2.16. Assuming a displacement field of the formu = c;xy and v =

c,xy, wherein ¢y and ¢, are constants, determine (a) expressions for displacements « and v;

(b) strain components &,, &, and y,,, at point B; and (¢) the normal strain &, in the direction of
line OB. Verify that the strain field is possible.

Figure P2.16.
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2.27. A 40-mm diameter bar ABC is composed of an aluminum part 4B and a steel part BC (Fig.
P2.27). After axial force P is applied, a strain gage attached to the steel measures normal
strain at the longitudinal direction as ¢, = 600 x. Determine (a) the magnitude of the applied

force P; (b) the total elongation of the bar if each material behaves elastically. Take £, = 70
GPa and E, =210 GPa.

Figure P2.27.
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2.29. The cast-iron pipe of length L, outer diameter D, and thickness ¢ is subjected to an axial
compressive P. Calculate (a) the change in length AL; (b) the change in outer diameter D; (c)
the change in thickness Az. Given: D =100 mm, =10 mm, L =0.4 m, P= 150 kN, £ =70
GPa, and v =0.3.

2.34. A metallic plate of width w and thickness 7 is subjected to a uniform axial force P as shown
in Fig. P2.34. Two strain gages placed at point 4 measure the strains ¢ and at 30° and 60°,
respectively, to the axis of the plate. Calculate (a) the normal strains ¢, and ¢,; (b) the normal
strains ¢, and €y (c) the shearing strain Vi Given: w=60 mm, t =6 mm, £ =200 GPa, v=
0.3, and P =25 kN.

Figure P2.34.
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2.41. For a given steel, E =200 GPa and G = 80 GPa. If the state of strain at a point within this

material is given by

200 100 0
100 300 400 |
0 400 0

ascertain the corresponding components of the stress tensor.



2.42. For a material with G = 80 GPa and E = 200 GPa, determine the strain tensor for a state of
stress given by

20 -4 5
-4 0 10| MPa
5 10 15

2.50. The stress field in an elastic body is given by

[cyz 0 }
0 —cx?

where c is a constant. Derive expressions for the displacement components u(x, ) and v(x, y)
in the body.

2.54. A bar of uniform cross-sectional area 4, modulus of elasticity £, and length L is fixed at its
right end and subjected to axial forces P; and P, at its free end. Verify that the total strain

energy stored in the bar is given by
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(P2.54)

Note that U 1s not the sum of the strain energies due to P; and P, acting separately. Find the
components of the energy for P, = P, =P and v = 0.25.

2.55. Three bars of successively larger volume are to support the same load P (Fig. P2.55). Note
that the first bar has a uniform cross-sectional area 4 over its length L. Neglecting stress
concentrations, compare the strain energy stored in the three bars.

Figure P2.55.




2.59. (a) Taking into account only the effect of normal stress, determine the strain energy of
prismatic beam 4B due to the axial force P and moment M|, acting simultaneously (Fig.
P2.59). (b) Evaluate the strain energy for the case in which the beam is rectangular, 100-mm
deep by 75-mmwide, P=8 kN, M, =2kN -m L=12ma=03m,b=0.9m,and E=70
GPa.

Figure P2.59.
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2.61. (a) Determine the strain energy of a solid brass circular shaft ABC loaded as shown in Fig.
P2.61, assuming that the stress concentrations may be omitted. (b) Calculate the strain energy
for T=14kN - m, a =500 mm, d =20 mm, and G =42 GPa.

Figure P2.61.

2.66. The state of stress at a point is

200 200 10
20 —-50 0O |MPa
10 0 40

Decompose this array into a set of dilatational stresses and a set of deviator stresses.
Determine the values of principal deviator stress.

2.67. Calculate the strain energy per unit volume in changing the volume and in changing the shape
of the material at any point on the surface of a steel shaft 120 mm in diameter subjected to
torques of 20 kN - m and moments of 15 kN - m at its ends. Use £ =200 GPa and v = 0.25.

The example problems in the book should also be added this list of problems.



